NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
WAVES
172208
For aluminium the bulk modulus of elasticity is $7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and density is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The velocity of longitudinal waves is aluminium is
1 $2.63 \mathrm{~m} / \mathrm{s}$
2 $5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
3 $10.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
4 $7.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
Explanation:
B Given, Bulk modulus of elasticity $(B)=7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ Density $(\rho)=2.70 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ We know that, $\text { Velocity }(\mathrm{v})=\sqrt{\frac{\mathrm{B}}{\rho}}$ $\mathrm{v}=\sqrt{\frac{7.5 \times 10^{10}}{2.70 \times 10^{3}}}$ Velocity, $\mathrm{v}=5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
SRMJEEE-2017
WAVES
172211
The distance between two points differing in phase by $60^{\circ}$ on a wave having a wave velocity $360 \mathrm{~m} / \mathrm{s}$ and frequency $500 \mathrm{~Hz}$ is
172213
A progressive wave is represented by $y=12 \sin (5 t-4 x) \mathrm{cm}$. On this wave, how far away are the two points having phase difference of $90^{\circ}$ ?
172208
For aluminium the bulk modulus of elasticity is $7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and density is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The velocity of longitudinal waves is aluminium is
1 $2.63 \mathrm{~m} / \mathrm{s}$
2 $5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
3 $10.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
4 $7.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
Explanation:
B Given, Bulk modulus of elasticity $(B)=7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ Density $(\rho)=2.70 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ We know that, $\text { Velocity }(\mathrm{v})=\sqrt{\frac{\mathrm{B}}{\rho}}$ $\mathrm{v}=\sqrt{\frac{7.5 \times 10^{10}}{2.70 \times 10^{3}}}$ Velocity, $\mathrm{v}=5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
SRMJEEE-2017
WAVES
172211
The distance between two points differing in phase by $60^{\circ}$ on a wave having a wave velocity $360 \mathrm{~m} / \mathrm{s}$ and frequency $500 \mathrm{~Hz}$ is
172213
A progressive wave is represented by $y=12 \sin (5 t-4 x) \mathrm{cm}$. On this wave, how far away are the two points having phase difference of $90^{\circ}$ ?
172208
For aluminium the bulk modulus of elasticity is $7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and density is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The velocity of longitudinal waves is aluminium is
1 $2.63 \mathrm{~m} / \mathrm{s}$
2 $5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
3 $10.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
4 $7.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
Explanation:
B Given, Bulk modulus of elasticity $(B)=7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ Density $(\rho)=2.70 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ We know that, $\text { Velocity }(\mathrm{v})=\sqrt{\frac{\mathrm{B}}{\rho}}$ $\mathrm{v}=\sqrt{\frac{7.5 \times 10^{10}}{2.70 \times 10^{3}}}$ Velocity, $\mathrm{v}=5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
SRMJEEE-2017
WAVES
172211
The distance between two points differing in phase by $60^{\circ}$ on a wave having a wave velocity $360 \mathrm{~m} / \mathrm{s}$ and frequency $500 \mathrm{~Hz}$ is
172213
A progressive wave is represented by $y=12 \sin (5 t-4 x) \mathrm{cm}$. On this wave, how far away are the two points having phase difference of $90^{\circ}$ ?
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
WAVES
172208
For aluminium the bulk modulus of elasticity is $7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and density is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The velocity of longitudinal waves is aluminium is
1 $2.63 \mathrm{~m} / \mathrm{s}$
2 $5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
3 $10.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
4 $7.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
Explanation:
B Given, Bulk modulus of elasticity $(B)=7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ Density $(\rho)=2.70 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ We know that, $\text { Velocity }(\mathrm{v})=\sqrt{\frac{\mathrm{B}}{\rho}}$ $\mathrm{v}=\sqrt{\frac{7.5 \times 10^{10}}{2.70 \times 10^{3}}}$ Velocity, $\mathrm{v}=5.27 \times 10^{3} \mathrm{~m} / \mathrm{s}$
SRMJEEE-2017
WAVES
172211
The distance between two points differing in phase by $60^{\circ}$ on a wave having a wave velocity $360 \mathrm{~m} / \mathrm{s}$ and frequency $500 \mathrm{~Hz}$ is
172213
A progressive wave is represented by $y=12 \sin (5 t-4 x) \mathrm{cm}$. On this wave, how far away are the two points having phase difference of $90^{\circ}$ ?