Wave and Wave characteristics
WAVES

172192 Find the wrong statement from the following about the equation of stationary wave given by $y=0.04 \cos (\pi x) \sin (50 \pi t) m$ where $t$ is in second. Then for the stationary wave

1 Velocity $=50 \mathrm{~m} / \mathrm{s}$
2 Time period $=0.02 \mathrm{~s}$
3 Amplitude $=0.02 \mathrm{~m}$
4 Wavelength $=2 \mathrm{~m}$
WAVES

172193 An earthquake generates both transverse $S$ and longitudinal $P$ waves in the earth with speeds $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ and $8.0 \mathrm{~km} \mathrm{~s}^{-1}$ respectively. A seismograph records that the first $P$-wave arrives 3.5 minutes earlier than the first $S$ wave. From the seismograph, the epicenter of the earthquake is located at a distance.

1 $1080 \mathrm{~km}$
2 $2468 \mathrm{~km}$
3 $2160 \mathrm{~km}$
4 $4320 \mathrm{~km}$
WAVES

172194 If speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and in water is $1480 \mathrm{~m} / \mathrm{s}$. If frequency of sound is $1000 \mathrm{kHz}$, then find wavelength in water

1 $2.96 \mathrm{~mm}$
2 $1.48 \mathrm{~mm}$
3 0.74
4 $1 \mathrm{~mm}$
WAVES

172195 The displacement of wave is represented by $y=$ $0.6 \times 10^{-3} \sin (500 t-0.05 x)$, where all the quantities are in their proper units. The maximum particle velocity (in $\mathrm{ms}^{-1}$ ) of the medium is

1 0.5
2 0.03
3 0.150
4 0.75
5 0.3
WAVES

172197 The path difference between two waves
$\mathbf{y}_{1}=\mathbf{a}_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) \text { and }$
$\mathbf{y}_{2}=\mathbf{a}_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) \text { is }$

1 $\frac{\lambda \phi}{2 \pi}$
2 $\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
3 $\frac{2 \lambda}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
4 $\frac{2 \pi \phi}{\lambda}$
WAVES

172192 Find the wrong statement from the following about the equation of stationary wave given by $y=0.04 \cos (\pi x) \sin (50 \pi t) m$ where $t$ is in second. Then for the stationary wave

1 Velocity $=50 \mathrm{~m} / \mathrm{s}$
2 Time period $=0.02 \mathrm{~s}$
3 Amplitude $=0.02 \mathrm{~m}$
4 Wavelength $=2 \mathrm{~m}$
WAVES

172193 An earthquake generates both transverse $S$ and longitudinal $P$ waves in the earth with speeds $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ and $8.0 \mathrm{~km} \mathrm{~s}^{-1}$ respectively. A seismograph records that the first $P$-wave arrives 3.5 minutes earlier than the first $S$ wave. From the seismograph, the epicenter of the earthquake is located at a distance.

1 $1080 \mathrm{~km}$
2 $2468 \mathrm{~km}$
3 $2160 \mathrm{~km}$
4 $4320 \mathrm{~km}$
WAVES

172194 If speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and in water is $1480 \mathrm{~m} / \mathrm{s}$. If frequency of sound is $1000 \mathrm{kHz}$, then find wavelength in water

1 $2.96 \mathrm{~mm}$
2 $1.48 \mathrm{~mm}$
3 0.74
4 $1 \mathrm{~mm}$
WAVES

172195 The displacement of wave is represented by $y=$ $0.6 \times 10^{-3} \sin (500 t-0.05 x)$, where all the quantities are in their proper units. The maximum particle velocity (in $\mathrm{ms}^{-1}$ ) of the medium is

1 0.5
2 0.03
3 0.150
4 0.75
5 0.3
WAVES

172197 The path difference between two waves
$\mathbf{y}_{1}=\mathbf{a}_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) \text { and }$
$\mathbf{y}_{2}=\mathbf{a}_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) \text { is }$

1 $\frac{\lambda \phi}{2 \pi}$
2 $\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
3 $\frac{2 \lambda}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
4 $\frac{2 \pi \phi}{\lambda}$
WAVES

172192 Find the wrong statement from the following about the equation of stationary wave given by $y=0.04 \cos (\pi x) \sin (50 \pi t) m$ where $t$ is in second. Then for the stationary wave

1 Velocity $=50 \mathrm{~m} / \mathrm{s}$
2 Time period $=0.02 \mathrm{~s}$
3 Amplitude $=0.02 \mathrm{~m}$
4 Wavelength $=2 \mathrm{~m}$
WAVES

172193 An earthquake generates both transverse $S$ and longitudinal $P$ waves in the earth with speeds $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ and $8.0 \mathrm{~km} \mathrm{~s}^{-1}$ respectively. A seismograph records that the first $P$-wave arrives 3.5 minutes earlier than the first $S$ wave. From the seismograph, the epicenter of the earthquake is located at a distance.

1 $1080 \mathrm{~km}$
2 $2468 \mathrm{~km}$
3 $2160 \mathrm{~km}$
4 $4320 \mathrm{~km}$
WAVES

172194 If speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and in water is $1480 \mathrm{~m} / \mathrm{s}$. If frequency of sound is $1000 \mathrm{kHz}$, then find wavelength in water

1 $2.96 \mathrm{~mm}$
2 $1.48 \mathrm{~mm}$
3 0.74
4 $1 \mathrm{~mm}$
WAVES

172195 The displacement of wave is represented by $y=$ $0.6 \times 10^{-3} \sin (500 t-0.05 x)$, where all the quantities are in their proper units. The maximum particle velocity (in $\mathrm{ms}^{-1}$ ) of the medium is

1 0.5
2 0.03
3 0.150
4 0.75
5 0.3
WAVES

172197 The path difference between two waves
$\mathbf{y}_{1}=\mathbf{a}_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) \text { and }$
$\mathbf{y}_{2}=\mathbf{a}_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) \text { is }$

1 $\frac{\lambda \phi}{2 \pi}$
2 $\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
3 $\frac{2 \lambda}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
4 $\frac{2 \pi \phi}{\lambda}$
WAVES

172192 Find the wrong statement from the following about the equation of stationary wave given by $y=0.04 \cos (\pi x) \sin (50 \pi t) m$ where $t$ is in second. Then for the stationary wave

1 Velocity $=50 \mathrm{~m} / \mathrm{s}$
2 Time period $=0.02 \mathrm{~s}$
3 Amplitude $=0.02 \mathrm{~m}$
4 Wavelength $=2 \mathrm{~m}$
WAVES

172193 An earthquake generates both transverse $S$ and longitudinal $P$ waves in the earth with speeds $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ and $8.0 \mathrm{~km} \mathrm{~s}^{-1}$ respectively. A seismograph records that the first $P$-wave arrives 3.5 minutes earlier than the first $S$ wave. From the seismograph, the epicenter of the earthquake is located at a distance.

1 $1080 \mathrm{~km}$
2 $2468 \mathrm{~km}$
3 $2160 \mathrm{~km}$
4 $4320 \mathrm{~km}$
WAVES

172194 If speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and in water is $1480 \mathrm{~m} / \mathrm{s}$. If frequency of sound is $1000 \mathrm{kHz}$, then find wavelength in water

1 $2.96 \mathrm{~mm}$
2 $1.48 \mathrm{~mm}$
3 0.74
4 $1 \mathrm{~mm}$
WAVES

172195 The displacement of wave is represented by $y=$ $0.6 \times 10^{-3} \sin (500 t-0.05 x)$, where all the quantities are in their proper units. The maximum particle velocity (in $\mathrm{ms}^{-1}$ ) of the medium is

1 0.5
2 0.03
3 0.150
4 0.75
5 0.3
WAVES

172197 The path difference between two waves
$\mathbf{y}_{1}=\mathbf{a}_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) \text { and }$
$\mathbf{y}_{2}=\mathbf{a}_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) \text { is }$

1 $\frac{\lambda \phi}{2 \pi}$
2 $\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
3 $\frac{2 \lambda}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
4 $\frac{2 \pi \phi}{\lambda}$
WAVES

172192 Find the wrong statement from the following about the equation of stationary wave given by $y=0.04 \cos (\pi x) \sin (50 \pi t) m$ where $t$ is in second. Then for the stationary wave

1 Velocity $=50 \mathrm{~m} / \mathrm{s}$
2 Time period $=0.02 \mathrm{~s}$
3 Amplitude $=0.02 \mathrm{~m}$
4 Wavelength $=2 \mathrm{~m}$
WAVES

172193 An earthquake generates both transverse $S$ and longitudinal $P$ waves in the earth with speeds $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ and $8.0 \mathrm{~km} \mathrm{~s}^{-1}$ respectively. A seismograph records that the first $P$-wave arrives 3.5 minutes earlier than the first $S$ wave. From the seismograph, the epicenter of the earthquake is located at a distance.

1 $1080 \mathrm{~km}$
2 $2468 \mathrm{~km}$
3 $2160 \mathrm{~km}$
4 $4320 \mathrm{~km}$
WAVES

172194 If speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and in water is $1480 \mathrm{~m} / \mathrm{s}$. If frequency of sound is $1000 \mathrm{kHz}$, then find wavelength in water

1 $2.96 \mathrm{~mm}$
2 $1.48 \mathrm{~mm}$
3 0.74
4 $1 \mathrm{~mm}$
WAVES

172195 The displacement of wave is represented by $y=$ $0.6 \times 10^{-3} \sin (500 t-0.05 x)$, where all the quantities are in their proper units. The maximum particle velocity (in $\mathrm{ms}^{-1}$ ) of the medium is

1 0.5
2 0.03
3 0.150
4 0.75
5 0.3
WAVES

172197 The path difference between two waves
$\mathbf{y}_{1}=\mathbf{a}_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right) \text { and }$
$\mathbf{y}_{2}=\mathbf{a}_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right) \text { is }$

1 $\frac{\lambda \phi}{2 \pi}$
2 $\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
3 $\frac{2 \lambda}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
4 $\frac{2 \pi \phi}{\lambda}$