172218
The potential energy of a body is given by $U=$ $A-B x^{2}$ (where $x$ is the displacement). The magnitude of force acting on the particle is
1 constant
2 proportional to $\mathrm{x}$
3 proportional to $\mathrm{x}^{2}$
4 proportional $1 / \mathrm{x}$
Explanation:
B Given that, $\text { P.E. (U) }=\mathrm{A}-\mathrm{Bx}^{2}$ $\text { Force }(\mathrm{F})=-\frac{\mathrm{dU}}{\mathrm{dx}}$ $\mathrm{F}=0-2 \mathrm{Bx}$ $\mathrm{F} \propto \mathrm{x}$
CG PET- 2006
WAVES
172222
What is the phase difference between two successive crests in the wave?
1 $\pi$
2 $\pi / 2$
3 $2 \pi$
4 $4 \pi$
Explanation:
C Path difference between two successive crests is equal to $\lambda$. $\text { So, } \Delta \mathrm{x}=\lambda$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \lambda$ $\Delta \phi=2 \pi$
MHT-CET 2004
WAVES
172223
In simple harmonic motion maximum velocity is at :
1 extreme position
2 half of extreme position
3 equilibrium position
4 between extreme and equilibrium position
Explanation:
C In a simple harmonic motion, Velocity, $v=\omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}}$ Therefore, velocity is maximum when $(y=0)$ that is at equilibrium position, velocity will be maximum. $\mathrm{v}=\mathrm{A} \omega$
BCECE-2004
WAVES
172272
The intensity ratio of two waves is $1: 9$. The ratio of their amplitudes is
172218
The potential energy of a body is given by $U=$ $A-B x^{2}$ (where $x$ is the displacement). The magnitude of force acting on the particle is
1 constant
2 proportional to $\mathrm{x}$
3 proportional to $\mathrm{x}^{2}$
4 proportional $1 / \mathrm{x}$
Explanation:
B Given that, $\text { P.E. (U) }=\mathrm{A}-\mathrm{Bx}^{2}$ $\text { Force }(\mathrm{F})=-\frac{\mathrm{dU}}{\mathrm{dx}}$ $\mathrm{F}=0-2 \mathrm{Bx}$ $\mathrm{F} \propto \mathrm{x}$
CG PET- 2006
WAVES
172222
What is the phase difference between two successive crests in the wave?
1 $\pi$
2 $\pi / 2$
3 $2 \pi$
4 $4 \pi$
Explanation:
C Path difference between two successive crests is equal to $\lambda$. $\text { So, } \Delta \mathrm{x}=\lambda$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \lambda$ $\Delta \phi=2 \pi$
MHT-CET 2004
WAVES
172223
In simple harmonic motion maximum velocity is at :
1 extreme position
2 half of extreme position
3 equilibrium position
4 between extreme and equilibrium position
Explanation:
C In a simple harmonic motion, Velocity, $v=\omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}}$ Therefore, velocity is maximum when $(y=0)$ that is at equilibrium position, velocity will be maximum. $\mathrm{v}=\mathrm{A} \omega$
BCECE-2004
WAVES
172272
The intensity ratio of two waves is $1: 9$. The ratio of their amplitudes is
172218
The potential energy of a body is given by $U=$ $A-B x^{2}$ (where $x$ is the displacement). The magnitude of force acting on the particle is
1 constant
2 proportional to $\mathrm{x}$
3 proportional to $\mathrm{x}^{2}$
4 proportional $1 / \mathrm{x}$
Explanation:
B Given that, $\text { P.E. (U) }=\mathrm{A}-\mathrm{Bx}^{2}$ $\text { Force }(\mathrm{F})=-\frac{\mathrm{dU}}{\mathrm{dx}}$ $\mathrm{F}=0-2 \mathrm{Bx}$ $\mathrm{F} \propto \mathrm{x}$
CG PET- 2006
WAVES
172222
What is the phase difference between two successive crests in the wave?
1 $\pi$
2 $\pi / 2$
3 $2 \pi$
4 $4 \pi$
Explanation:
C Path difference between two successive crests is equal to $\lambda$. $\text { So, } \Delta \mathrm{x}=\lambda$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \lambda$ $\Delta \phi=2 \pi$
MHT-CET 2004
WAVES
172223
In simple harmonic motion maximum velocity is at :
1 extreme position
2 half of extreme position
3 equilibrium position
4 between extreme and equilibrium position
Explanation:
C In a simple harmonic motion, Velocity, $v=\omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}}$ Therefore, velocity is maximum when $(y=0)$ that is at equilibrium position, velocity will be maximum. $\mathrm{v}=\mathrm{A} \omega$
BCECE-2004
WAVES
172272
The intensity ratio of two waves is $1: 9$. The ratio of their amplitudes is
172218
The potential energy of a body is given by $U=$ $A-B x^{2}$ (where $x$ is the displacement). The magnitude of force acting on the particle is
1 constant
2 proportional to $\mathrm{x}$
3 proportional to $\mathrm{x}^{2}$
4 proportional $1 / \mathrm{x}$
Explanation:
B Given that, $\text { P.E. (U) }=\mathrm{A}-\mathrm{Bx}^{2}$ $\text { Force }(\mathrm{F})=-\frac{\mathrm{dU}}{\mathrm{dx}}$ $\mathrm{F}=0-2 \mathrm{Bx}$ $\mathrm{F} \propto \mathrm{x}$
CG PET- 2006
WAVES
172222
What is the phase difference between two successive crests in the wave?
1 $\pi$
2 $\pi / 2$
3 $2 \pi$
4 $4 \pi$
Explanation:
C Path difference between two successive crests is equal to $\lambda$. $\text { So, } \Delta \mathrm{x}=\lambda$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}$ $\Delta \phi=\frac{2 \pi}{\lambda} \times \lambda$ $\Delta \phi=2 \pi$
MHT-CET 2004
WAVES
172223
In simple harmonic motion maximum velocity is at :
1 extreme position
2 half of extreme position
3 equilibrium position
4 between extreme and equilibrium position
Explanation:
C In a simple harmonic motion, Velocity, $v=\omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}}$ Therefore, velocity is maximum when $(y=0)$ that is at equilibrium position, velocity will be maximum. $\mathrm{v}=\mathrm{A} \omega$
BCECE-2004
WAVES
172272
The intensity ratio of two waves is $1: 9$. The ratio of their amplitudes is