172204
The phase velocity of a wave described by the equations $\psi=\psi_{0} \sin (k x+\omega t+\pi / 2)$ is
1 $\mathrm{x} / \mathrm{t}$
2 $\psi_{0} / \omega$
3 $\omega / \mathrm{k}$
4 $\pi / 2 \mathrm{k}$
5 $\psi_{0}$
Explanation:
C Given, $\psi=\psi_{0} \sin \left(\mathrm{kx}+\omega \mathrm{t}+\frac{\pi}{2}\right)$ We know, Phase velocity of wave $=\frac{\text { Angular frequency }}{\text { Propagation constant }}$ Hence, $\quad \mathrm{v}=\frac{\omega}{\mathrm{k}}$
Kerala CEE - 2017
WAVES
172180
The speed of a wave in a certain medium is 960 $\mathrm{m} / \mathrm{s}$. If 900 waves pass over a certain point of the medium in half a minute, the wavelength of the wave is
1 $16 \mathrm{~m}$
2 $32 \mathrm{~m}$
3 $9 \mathrm{~m}$
4 $18 \mathrm{~m}$
Explanation:
B Given, $\mathrm{v}=960 \mathrm{~m} / \mathrm{s}$ 900 waves passes in 0.5 minute or $30 \mathrm{sec}$ Frequency, $\mathrm{f}=\frac{900}{30}=30 \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{v}}{\mathrm{f}}=\frac{960}{30}=32 \mathrm{~m}$
MHT-CET 2020
WAVES
172158
A transverse wave is represented by $y=$ $\operatorname{Asin}(k x-\omega t)$. The velocity of the wave is given by
1 $\mathrm{kx}$
2 $\mathrm{k} / \omega$
3 $\mathrm{wt}$
4 $\omega / \mathrm{k}$
Explanation:
D From the equation $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$ $\frac{\mathrm{dy}}{\mathrm{dt}} =\mathrm{a} \omega \cos (\omega \mathrm{t}-\mathrm{kx})---(\mathrm{i})$ $\text { and } \frac{\mathrm{dy}}{\mathrm{dx}} =-\mathrm{ak} \cos (\omega \mathrm{t}-\mathrm{kx})--- \text { (ii) }$ By dividing eq (i)\&(ii) $\frac{d y}{d t} \times \frac{d x}{d y}=\frac{d x}{d t}=\frac{\omega \cos (\omega t-k x)}{a k \cos (\omega t-k x)}=\frac{\omega}{k}$ (Neglecting - ev sign) Velocity of wave $\left[\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\omega}{\mathrm{k}}\right]$
AP EAMCET-03.09.2021
WAVES
172161
Which of the following properties of a wave is independent of other?
1 Velocity
2 Frequency
3 Amplitude
4 Wave length
Explanation:
C The amplitude is independent of wavelength, frequency and velocity of wave. i.e. $\quad \mathrm{v}=\mathrm{n} \lambda$ where, $\quad \mathrm{v}=$ velocity $\mathrm{n}=$ frequency $\lambda=$ wavelength
172204
The phase velocity of a wave described by the equations $\psi=\psi_{0} \sin (k x+\omega t+\pi / 2)$ is
1 $\mathrm{x} / \mathrm{t}$
2 $\psi_{0} / \omega$
3 $\omega / \mathrm{k}$
4 $\pi / 2 \mathrm{k}$
5 $\psi_{0}$
Explanation:
C Given, $\psi=\psi_{0} \sin \left(\mathrm{kx}+\omega \mathrm{t}+\frac{\pi}{2}\right)$ We know, Phase velocity of wave $=\frac{\text { Angular frequency }}{\text { Propagation constant }}$ Hence, $\quad \mathrm{v}=\frac{\omega}{\mathrm{k}}$
Kerala CEE - 2017
WAVES
172180
The speed of a wave in a certain medium is 960 $\mathrm{m} / \mathrm{s}$. If 900 waves pass over a certain point of the medium in half a minute, the wavelength of the wave is
1 $16 \mathrm{~m}$
2 $32 \mathrm{~m}$
3 $9 \mathrm{~m}$
4 $18 \mathrm{~m}$
Explanation:
B Given, $\mathrm{v}=960 \mathrm{~m} / \mathrm{s}$ 900 waves passes in 0.5 minute or $30 \mathrm{sec}$ Frequency, $\mathrm{f}=\frac{900}{30}=30 \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{v}}{\mathrm{f}}=\frac{960}{30}=32 \mathrm{~m}$
MHT-CET 2020
WAVES
172158
A transverse wave is represented by $y=$ $\operatorname{Asin}(k x-\omega t)$. The velocity of the wave is given by
1 $\mathrm{kx}$
2 $\mathrm{k} / \omega$
3 $\mathrm{wt}$
4 $\omega / \mathrm{k}$
Explanation:
D From the equation $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$ $\frac{\mathrm{dy}}{\mathrm{dt}} =\mathrm{a} \omega \cos (\omega \mathrm{t}-\mathrm{kx})---(\mathrm{i})$ $\text { and } \frac{\mathrm{dy}}{\mathrm{dx}} =-\mathrm{ak} \cos (\omega \mathrm{t}-\mathrm{kx})--- \text { (ii) }$ By dividing eq (i)\&(ii) $\frac{d y}{d t} \times \frac{d x}{d y}=\frac{d x}{d t}=\frac{\omega \cos (\omega t-k x)}{a k \cos (\omega t-k x)}=\frac{\omega}{k}$ (Neglecting - ev sign) Velocity of wave $\left[\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\omega}{\mathrm{k}}\right]$
AP EAMCET-03.09.2021
WAVES
172161
Which of the following properties of a wave is independent of other?
1 Velocity
2 Frequency
3 Amplitude
4 Wave length
Explanation:
C The amplitude is independent of wavelength, frequency and velocity of wave. i.e. $\quad \mathrm{v}=\mathrm{n} \lambda$ where, $\quad \mathrm{v}=$ velocity $\mathrm{n}=$ frequency $\lambda=$ wavelength
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
WAVES
172204
The phase velocity of a wave described by the equations $\psi=\psi_{0} \sin (k x+\omega t+\pi / 2)$ is
1 $\mathrm{x} / \mathrm{t}$
2 $\psi_{0} / \omega$
3 $\omega / \mathrm{k}$
4 $\pi / 2 \mathrm{k}$
5 $\psi_{0}$
Explanation:
C Given, $\psi=\psi_{0} \sin \left(\mathrm{kx}+\omega \mathrm{t}+\frac{\pi}{2}\right)$ We know, Phase velocity of wave $=\frac{\text { Angular frequency }}{\text { Propagation constant }}$ Hence, $\quad \mathrm{v}=\frac{\omega}{\mathrm{k}}$
Kerala CEE - 2017
WAVES
172180
The speed of a wave in a certain medium is 960 $\mathrm{m} / \mathrm{s}$. If 900 waves pass over a certain point of the medium in half a minute, the wavelength of the wave is
1 $16 \mathrm{~m}$
2 $32 \mathrm{~m}$
3 $9 \mathrm{~m}$
4 $18 \mathrm{~m}$
Explanation:
B Given, $\mathrm{v}=960 \mathrm{~m} / \mathrm{s}$ 900 waves passes in 0.5 minute or $30 \mathrm{sec}$ Frequency, $\mathrm{f}=\frac{900}{30}=30 \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{v}}{\mathrm{f}}=\frac{960}{30}=32 \mathrm{~m}$
MHT-CET 2020
WAVES
172158
A transverse wave is represented by $y=$ $\operatorname{Asin}(k x-\omega t)$. The velocity of the wave is given by
1 $\mathrm{kx}$
2 $\mathrm{k} / \omega$
3 $\mathrm{wt}$
4 $\omega / \mathrm{k}$
Explanation:
D From the equation $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$ $\frac{\mathrm{dy}}{\mathrm{dt}} =\mathrm{a} \omega \cos (\omega \mathrm{t}-\mathrm{kx})---(\mathrm{i})$ $\text { and } \frac{\mathrm{dy}}{\mathrm{dx}} =-\mathrm{ak} \cos (\omega \mathrm{t}-\mathrm{kx})--- \text { (ii) }$ By dividing eq (i)\&(ii) $\frac{d y}{d t} \times \frac{d x}{d y}=\frac{d x}{d t}=\frac{\omega \cos (\omega t-k x)}{a k \cos (\omega t-k x)}=\frac{\omega}{k}$ (Neglecting - ev sign) Velocity of wave $\left[\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\omega}{\mathrm{k}}\right]$
AP EAMCET-03.09.2021
WAVES
172161
Which of the following properties of a wave is independent of other?
1 Velocity
2 Frequency
3 Amplitude
4 Wave length
Explanation:
C The amplitude is independent of wavelength, frequency and velocity of wave. i.e. $\quad \mathrm{v}=\mathrm{n} \lambda$ where, $\quad \mathrm{v}=$ velocity $\mathrm{n}=$ frequency $\lambda=$ wavelength
172204
The phase velocity of a wave described by the equations $\psi=\psi_{0} \sin (k x+\omega t+\pi / 2)$ is
1 $\mathrm{x} / \mathrm{t}$
2 $\psi_{0} / \omega$
3 $\omega / \mathrm{k}$
4 $\pi / 2 \mathrm{k}$
5 $\psi_{0}$
Explanation:
C Given, $\psi=\psi_{0} \sin \left(\mathrm{kx}+\omega \mathrm{t}+\frac{\pi}{2}\right)$ We know, Phase velocity of wave $=\frac{\text { Angular frequency }}{\text { Propagation constant }}$ Hence, $\quad \mathrm{v}=\frac{\omega}{\mathrm{k}}$
Kerala CEE - 2017
WAVES
172180
The speed of a wave in a certain medium is 960 $\mathrm{m} / \mathrm{s}$. If 900 waves pass over a certain point of the medium in half a minute, the wavelength of the wave is
1 $16 \mathrm{~m}$
2 $32 \mathrm{~m}$
3 $9 \mathrm{~m}$
4 $18 \mathrm{~m}$
Explanation:
B Given, $\mathrm{v}=960 \mathrm{~m} / \mathrm{s}$ 900 waves passes in 0.5 minute or $30 \mathrm{sec}$ Frequency, $\mathrm{f}=\frac{900}{30}=30 \mathrm{~Hz}$ Wavelength $(\lambda)=\frac{\mathrm{v}}{\mathrm{f}}=\frac{960}{30}=32 \mathrm{~m}$
MHT-CET 2020
WAVES
172158
A transverse wave is represented by $y=$ $\operatorname{Asin}(k x-\omega t)$. The velocity of the wave is given by
1 $\mathrm{kx}$
2 $\mathrm{k} / \omega$
3 $\mathrm{wt}$
4 $\omega / \mathrm{k}$
Explanation:
D From the equation $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$ $\frac{\mathrm{dy}}{\mathrm{dt}} =\mathrm{a} \omega \cos (\omega \mathrm{t}-\mathrm{kx})---(\mathrm{i})$ $\text { and } \frac{\mathrm{dy}}{\mathrm{dx}} =-\mathrm{ak} \cos (\omega \mathrm{t}-\mathrm{kx})--- \text { (ii) }$ By dividing eq (i)\&(ii) $\frac{d y}{d t} \times \frac{d x}{d y}=\frac{d x}{d t}=\frac{\omega \cos (\omega t-k x)}{a k \cos (\omega t-k x)}=\frac{\omega}{k}$ (Neglecting - ev sign) Velocity of wave $\left[\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\omega}{\mathrm{k}}\right]$
AP EAMCET-03.09.2021
WAVES
172161
Which of the following properties of a wave is independent of other?
1 Velocity
2 Frequency
3 Amplitude
4 Wave length
Explanation:
C The amplitude is independent of wavelength, frequency and velocity of wave. i.e. $\quad \mathrm{v}=\mathrm{n} \lambda$ where, $\quad \mathrm{v}=$ velocity $\mathrm{n}=$ frequency $\lambda=$ wavelength