Mixing of Non-reacting gases and Mean Free Path
Kinetic Theory of Gases

139387 Three containers of the same volume contain three different gases. The masses of the molecules are $m_{1}, m_{2}$ and $m_{3}$ and the number of molecules in their respective containers $\operatorname{are} \mathbf{N}_{1}$, $N_{2}$ and N3. The gas pressure in the containers are $P_{1}, P_{2}$ and $P_{3}$ respectively. All the gases are now mixed and putss in one of these containers. The pressure $p$ of the mixture will be

1 $\mathrm{P} \lt \left(\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\right)$
2 $P=\frac{P_{1}+P_{2}+P_{3}}{3}$
3 $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
4 $\mathrm{P}>\left(\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\right)$
Kinetic Theory of Gases

139377 The density of a gas is 1 molecules $\mathrm{cm}^{-3}$. If the molecular diameter is $1 \times 10^{-8} \mathrm{~cm}$ then the mean free path of the molecules is
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-11.07.2022,Shift-II#

1 $\frac{1}{\sqrt{2} \pi} \times 10^{14} \mathrm{~m}$
2 $\frac{1}{\sqrt{2} \pi} \times 10^{13} \mathrm{~m}$
3 $\frac{1}{\sqrt{6} \pi} \times 10^{14} \mathrm{~m}$
4 $\frac{1}{\sqrt{2} \pi} \times 10^{13} \mathrm{~m}$
Kinetic Theory of Gases

139389 An ideal gas is confined to an isolated closed chamber. As the gas undergoes an adiabatic expansion the average time of collision between molecules increases as $V^{x}$, where $V$ is the volume of gas. The value of $x$ is
( $\gamma=$ Ratio of specific heat capacities of the gas)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-25.04.2018,Shift-II#

1 $\frac{\gamma+1}{2}$
2 $\frac{\gamma-1}{2}$
3 $\frac{1+2 \gamma}{3}$
4 $\frac{1+3 \gamma}{5}$
Kinetic Theory of Gases

139387 Three containers of the same volume contain three different gases. The masses of the molecules are $m_{1}, m_{2}$ and $m_{3}$ and the number of molecules in their respective containers $\operatorname{are} \mathbf{N}_{1}$, $N_{2}$ and N3. The gas pressure in the containers are $P_{1}, P_{2}$ and $P_{3}$ respectively. All the gases are now mixed and putss in one of these containers. The pressure $p$ of the mixture will be

1 $\mathrm{P} \lt \left(\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\right)$
2 $P=\frac{P_{1}+P_{2}+P_{3}}{3}$
3 $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
4 $\mathrm{P}>\left(\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\right)$
Kinetic Theory of Gases

139377 The density of a gas is 1 molecules $\mathrm{cm}^{-3}$. If the molecular diameter is $1 \times 10^{-8} \mathrm{~cm}$ then the mean free path of the molecules is
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-11.07.2022,Shift-II#

1 $\frac{1}{\sqrt{2} \pi} \times 10^{14} \mathrm{~m}$
2 $\frac{1}{\sqrt{2} \pi} \times 10^{13} \mathrm{~m}$
3 $\frac{1}{\sqrt{6} \pi} \times 10^{14} \mathrm{~m}$
4 $\frac{1}{\sqrt{2} \pi} \times 10^{13} \mathrm{~m}$
Kinetic Theory of Gases

139389 An ideal gas is confined to an isolated closed chamber. As the gas undergoes an adiabatic expansion the average time of collision between molecules increases as $V^{x}$, where $V$ is the volume of gas. The value of $x$ is
( $\gamma=$ Ratio of specific heat capacities of the gas)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-25.04.2018,Shift-II#

1 $\frac{\gamma+1}{2}$
2 $\frac{\gamma-1}{2}$
3 $\frac{1+2 \gamma}{3}$
4 $\frac{1+3 \gamma}{5}$
Kinetic Theory of Gases

139387 Three containers of the same volume contain three different gases. The masses of the molecules are $m_{1}, m_{2}$ and $m_{3}$ and the number of molecules in their respective containers $\operatorname{are} \mathbf{N}_{1}$, $N_{2}$ and N3. The gas pressure in the containers are $P_{1}, P_{2}$ and $P_{3}$ respectively. All the gases are now mixed and putss in one of these containers. The pressure $p$ of the mixture will be

1 $\mathrm{P} \lt \left(\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\right)$
2 $P=\frac{P_{1}+P_{2}+P_{3}}{3}$
3 $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
4 $\mathrm{P}>\left(\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\right)$
Kinetic Theory of Gases

139377 The density of a gas is 1 molecules $\mathrm{cm}^{-3}$. If the molecular diameter is $1 \times 10^{-8} \mathrm{~cm}$ then the mean free path of the molecules is
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-11.07.2022,Shift-II#

1 $\frac{1}{\sqrt{2} \pi} \times 10^{14} \mathrm{~m}$
2 $\frac{1}{\sqrt{2} \pi} \times 10^{13} \mathrm{~m}$
3 $\frac{1}{\sqrt{6} \pi} \times 10^{14} \mathrm{~m}$
4 $\frac{1}{\sqrt{2} \pi} \times 10^{13} \mathrm{~m}$
Kinetic Theory of Gases

139389 An ideal gas is confined to an isolated closed chamber. As the gas undergoes an adiabatic expansion the average time of collision between molecules increases as $V^{x}$, where $V$ is the volume of gas. The value of $x$ is
( $\gamma=$ Ratio of specific heat capacities of the gas)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-25.04.2018,Shift-II#

1 $\frac{\gamma+1}{2}$
2 $\frac{\gamma-1}{2}$
3 $\frac{1+2 \gamma}{3}$
4 $\frac{1+3 \gamma}{5}$