Specific heats of gases
Kinetic Theory of Gases

139339 For a monoatomic gas, the molar specific heat at constant pressure divided by the molar gas constant $R$ is equal to

1 2.5
2 1.5
3 5.0
4 3.5
5 4.0
Kinetic Theory of Gases

139331 For a gas the value of $\frac{R}{C_{v}}=0.4$, so the gas is (R-universal gas constant)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET (21.04.2019) Shift-II#

1 monoatomic
2 diatomic
3 triatomic
4 polyatomic
Kinetic Theory of Gases

139341 Two moles of oxygen is mixed with eight moles of helium. The effective specific heat of the mixture at constant volume is

1 $1.3 \mathrm{R}$
2 $1.4 \mathrm{R}$
3 $1.7 \mathrm{R}$
4 $1.9 \mathrm{R}$
5 $1.2 \mathrm{R}$
Kinetic Theory of Gases

139342 One mole of a gas occupies 22.4 lit at N.T.P. Calculate the difference between two molar specific heats of the gas.
$\mathrm{J}=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kcal}$.

1 $1.979 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
2 $2.378 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
3 $4.569 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
4 $3.028 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
Kinetic Theory of Gases

139339 For a monoatomic gas, the molar specific heat at constant pressure divided by the molar gas constant $R$ is equal to

1 2.5
2 1.5
3 5.0
4 3.5
5 4.0
Kinetic Theory of Gases

139331 For a gas the value of $\frac{R}{C_{v}}=0.4$, so the gas is (R-universal gas constant)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET (21.04.2019) Shift-II#

1 monoatomic
2 diatomic
3 triatomic
4 polyatomic
Kinetic Theory of Gases

139341 Two moles of oxygen is mixed with eight moles of helium. The effective specific heat of the mixture at constant volume is

1 $1.3 \mathrm{R}$
2 $1.4 \mathrm{R}$
3 $1.7 \mathrm{R}$
4 $1.9 \mathrm{R}$
5 $1.2 \mathrm{R}$
Kinetic Theory of Gases

139342 One mole of a gas occupies 22.4 lit at N.T.P. Calculate the difference between two molar specific heats of the gas.
$\mathrm{J}=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kcal}$.

1 $1.979 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
2 $2.378 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
3 $4.569 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
4 $3.028 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
Kinetic Theory of Gases

139339 For a monoatomic gas, the molar specific heat at constant pressure divided by the molar gas constant $R$ is equal to

1 2.5
2 1.5
3 5.0
4 3.5
5 4.0
Kinetic Theory of Gases

139331 For a gas the value of $\frac{R}{C_{v}}=0.4$, so the gas is (R-universal gas constant)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET (21.04.2019) Shift-II#

1 monoatomic
2 diatomic
3 triatomic
4 polyatomic
Kinetic Theory of Gases

139341 Two moles of oxygen is mixed with eight moles of helium. The effective specific heat of the mixture at constant volume is

1 $1.3 \mathrm{R}$
2 $1.4 \mathrm{R}$
3 $1.7 \mathrm{R}$
4 $1.9 \mathrm{R}$
5 $1.2 \mathrm{R}$
Kinetic Theory of Gases

139342 One mole of a gas occupies 22.4 lit at N.T.P. Calculate the difference between two molar specific heats of the gas.
$\mathrm{J}=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kcal}$.

1 $1.979 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
2 $2.378 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
3 $4.569 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
4 $3.028 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
Kinetic Theory of Gases

139339 For a monoatomic gas, the molar specific heat at constant pressure divided by the molar gas constant $R$ is equal to

1 2.5
2 1.5
3 5.0
4 3.5
5 4.0
Kinetic Theory of Gases

139331 For a gas the value of $\frac{R}{C_{v}}=0.4$, so the gas is (R-universal gas constant)
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET (21.04.2019) Shift-II#

1 monoatomic
2 diatomic
3 triatomic
4 polyatomic
Kinetic Theory of Gases

139341 Two moles of oxygen is mixed with eight moles of helium. The effective specific heat of the mixture at constant volume is

1 $1.3 \mathrm{R}$
2 $1.4 \mathrm{R}$
3 $1.7 \mathrm{R}$
4 $1.9 \mathrm{R}$
5 $1.2 \mathrm{R}$
Kinetic Theory of Gases

139342 One mole of a gas occupies 22.4 lit at N.T.P. Calculate the difference between two molar specific heats of the gas.
$\mathrm{J}=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kcal}$.

1 $1.979 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
2 $2.378 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
3 $4.569 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$
4 $3.028 \mathrm{kcal} / \mathrm{kmol} \mathrm{K}$