Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139288 The volume of a gas and the number of molecules within that volume for three situations are (1) $2 \mathrm{~V}_{0}$ and $\mathrm{N}_{0}$ (2) $3 \mathrm{~V}_{0}$ and $3 \mathrm{~N}_{0}$ (3) $3 \mathrm{~V}_{0}$ and $9 \mathrm{~N}_{0}$. The situations are ranked according to the mean free path (greatest first) as

1 (1), (2), (3)
2 (3), (2), (1)
3 (2), (3), (1)
4 (2), (1), (3)
Kinetic Theory of Gases

139289 The root mean square speed of Hydrogen gas molecule at $300 \mathrm{~K}$ is $1920 \mathrm{~m} / \mathrm{s}$. What is the rms speed of oxygen gas molecules at the same temperature? (Answer in MKS units).

1 480
2 560
3 940
4 860
Kinetic Theory of Gases

139290 Find the order of root mean square (r.ms.) velocity of molecules of a gas, if the velocity of sound in the same gas is $330 \mathrm{~m} / \mathrm{s}$. $(\gamma=1.41)$

1 $481 \mathrm{~m} / \mathrm{s}$
2 $293 \mathrm{~m} / \mathrm{s}$
3 $280 \mathrm{~m} / \mathrm{s}$
4 $260 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139291 The speed of some molecules, in a gas, is as given below:
5.0,3.0,2.0,4.0,5.0,7.0,2.0,4.0,7.0 $\left(\times 10^{6} \mathrm{~m} / \mathrm{s}\right)$
The rms speed of the above is near to

1 $\frac{21}{5} \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $\frac{13}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
3 $\frac{14}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
4 $\frac{16}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139288 The volume of a gas and the number of molecules within that volume for three situations are (1) $2 \mathrm{~V}_{0}$ and $\mathrm{N}_{0}$ (2) $3 \mathrm{~V}_{0}$ and $3 \mathrm{~N}_{0}$ (3) $3 \mathrm{~V}_{0}$ and $9 \mathrm{~N}_{0}$. The situations are ranked according to the mean free path (greatest first) as

1 (1), (2), (3)
2 (3), (2), (1)
3 (2), (3), (1)
4 (2), (1), (3)
Kinetic Theory of Gases

139289 The root mean square speed of Hydrogen gas molecule at $300 \mathrm{~K}$ is $1920 \mathrm{~m} / \mathrm{s}$. What is the rms speed of oxygen gas molecules at the same temperature? (Answer in MKS units).

1 480
2 560
3 940
4 860
Kinetic Theory of Gases

139290 Find the order of root mean square (r.ms.) velocity of molecules of a gas, if the velocity of sound in the same gas is $330 \mathrm{~m} / \mathrm{s}$. $(\gamma=1.41)$

1 $481 \mathrm{~m} / \mathrm{s}$
2 $293 \mathrm{~m} / \mathrm{s}$
3 $280 \mathrm{~m} / \mathrm{s}$
4 $260 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139291 The speed of some molecules, in a gas, is as given below:
5.0,3.0,2.0,4.0,5.0,7.0,2.0,4.0,7.0 $\left(\times 10^{6} \mathrm{~m} / \mathrm{s}\right)$
The rms speed of the above is near to

1 $\frac{21}{5} \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $\frac{13}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
3 $\frac{14}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
4 $\frac{16}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139288 The volume of a gas and the number of molecules within that volume for three situations are (1) $2 \mathrm{~V}_{0}$ and $\mathrm{N}_{0}$ (2) $3 \mathrm{~V}_{0}$ and $3 \mathrm{~N}_{0}$ (3) $3 \mathrm{~V}_{0}$ and $9 \mathrm{~N}_{0}$. The situations are ranked according to the mean free path (greatest first) as

1 (1), (2), (3)
2 (3), (2), (1)
3 (2), (3), (1)
4 (2), (1), (3)
Kinetic Theory of Gases

139289 The root mean square speed of Hydrogen gas molecule at $300 \mathrm{~K}$ is $1920 \mathrm{~m} / \mathrm{s}$. What is the rms speed of oxygen gas molecules at the same temperature? (Answer in MKS units).

1 480
2 560
3 940
4 860
Kinetic Theory of Gases

139290 Find the order of root mean square (r.ms.) velocity of molecules of a gas, if the velocity of sound in the same gas is $330 \mathrm{~m} / \mathrm{s}$. $(\gamma=1.41)$

1 $481 \mathrm{~m} / \mathrm{s}$
2 $293 \mathrm{~m} / \mathrm{s}$
3 $280 \mathrm{~m} / \mathrm{s}$
4 $260 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139291 The speed of some molecules, in a gas, is as given below:
5.0,3.0,2.0,4.0,5.0,7.0,2.0,4.0,7.0 $\left(\times 10^{6} \mathrm{~m} / \mathrm{s}\right)$
The rms speed of the above is near to

1 $\frac{21}{5} \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $\frac{13}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
3 $\frac{14}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
4 $\frac{16}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139288 The volume of a gas and the number of molecules within that volume for three situations are (1) $2 \mathrm{~V}_{0}$ and $\mathrm{N}_{0}$ (2) $3 \mathrm{~V}_{0}$ and $3 \mathrm{~N}_{0}$ (3) $3 \mathrm{~V}_{0}$ and $9 \mathrm{~N}_{0}$. The situations are ranked according to the mean free path (greatest first) as

1 (1), (2), (3)
2 (3), (2), (1)
3 (2), (3), (1)
4 (2), (1), (3)
Kinetic Theory of Gases

139289 The root mean square speed of Hydrogen gas molecule at $300 \mathrm{~K}$ is $1920 \mathrm{~m} / \mathrm{s}$. What is the rms speed of oxygen gas molecules at the same temperature? (Answer in MKS units).

1 480
2 560
3 940
4 860
Kinetic Theory of Gases

139290 Find the order of root mean square (r.ms.) velocity of molecules of a gas, if the velocity of sound in the same gas is $330 \mathrm{~m} / \mathrm{s}$. $(\gamma=1.41)$

1 $481 \mathrm{~m} / \mathrm{s}$
2 $293 \mathrm{~m} / \mathrm{s}$
3 $280 \mathrm{~m} / \mathrm{s}$
4 $260 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139291 The speed of some molecules, in a gas, is as given below:
5.0,3.0,2.0,4.0,5.0,7.0,2.0,4.0,7.0 $\left(\times 10^{6} \mathrm{~m} / \mathrm{s}\right)$
The rms speed of the above is near to

1 $\frac{21}{5} \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $\frac{13}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
3 $\frac{14}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$
4 $\frac{16}{3} \times 10^{6} \mathrm{~m} / \mathrm{s}$