Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139248 The temperature at which the velocity of oxygen will be half that of hydrogen at NTP is

1 $1092^{\circ} \mathrm{C}$
2 $1492^{\circ} \mathrm{C}$
3 $273 \mathrm{~K}$
4 $819^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139250 The speed of sound through a gaseous medium bears a constant ratio with the rms speed of its molecules. This constant ratio is :

1 $\gamma$
2 $\sqrt{\frac{2 \gamma}{3}}$
3 $\gamma-1$
4 $\sqrt{\frac{\gamma}{3}}$
Kinetic Theory of Gases

139252 For a gas molecule with 6 degrees of freedom the law of equipartition of energy gives the following relation between the molar specific heat $\left(C_{V}\right)$ and constant $(R)$

1 $\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{R}}{2}$
2 $\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\mathrm{C}_{\mathrm{V}}=3 \mathrm{R}$
Kinetic Theory of Gases

139253 If the density of hydrogen gas at NTP is $0.0000893 \mathrm{gm} / \mathrm{cm}^{3}$, then the root mean square velocity of molecules of hydrogen molecules at NTP is

1 $1840 \mathrm{~cm} / \mathrm{sec}$
2 $184.0 \mathrm{~cm} / \mathrm{sec}$
3 $1840 \mathrm{~m} / \mathrm{sec}$
4 $184.0 \mathrm{~m} / \mathrm{sec}$
Kinetic Theory of Gases

139248 The temperature at which the velocity of oxygen will be half that of hydrogen at NTP is

1 $1092^{\circ} \mathrm{C}$
2 $1492^{\circ} \mathrm{C}$
3 $273 \mathrm{~K}$
4 $819^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139250 The speed of sound through a gaseous medium bears a constant ratio with the rms speed of its molecules. This constant ratio is :

1 $\gamma$
2 $\sqrt{\frac{2 \gamma}{3}}$
3 $\gamma-1$
4 $\sqrt{\frac{\gamma}{3}}$
Kinetic Theory of Gases

139252 For a gas molecule with 6 degrees of freedom the law of equipartition of energy gives the following relation between the molar specific heat $\left(C_{V}\right)$ and constant $(R)$

1 $\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{R}}{2}$
2 $\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\mathrm{C}_{\mathrm{V}}=3 \mathrm{R}$
Kinetic Theory of Gases

139253 If the density of hydrogen gas at NTP is $0.0000893 \mathrm{gm} / \mathrm{cm}^{3}$, then the root mean square velocity of molecules of hydrogen molecules at NTP is

1 $1840 \mathrm{~cm} / \mathrm{sec}$
2 $184.0 \mathrm{~cm} / \mathrm{sec}$
3 $1840 \mathrm{~m} / \mathrm{sec}$
4 $184.0 \mathrm{~m} / \mathrm{sec}$
Kinetic Theory of Gases

139248 The temperature at which the velocity of oxygen will be half that of hydrogen at NTP is

1 $1092^{\circ} \mathrm{C}$
2 $1492^{\circ} \mathrm{C}$
3 $273 \mathrm{~K}$
4 $819^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139250 The speed of sound through a gaseous medium bears a constant ratio with the rms speed of its molecules. This constant ratio is :

1 $\gamma$
2 $\sqrt{\frac{2 \gamma}{3}}$
3 $\gamma-1$
4 $\sqrt{\frac{\gamma}{3}}$
Kinetic Theory of Gases

139252 For a gas molecule with 6 degrees of freedom the law of equipartition of energy gives the following relation between the molar specific heat $\left(C_{V}\right)$ and constant $(R)$

1 $\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{R}}{2}$
2 $\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\mathrm{C}_{\mathrm{V}}=3 \mathrm{R}$
Kinetic Theory of Gases

139253 If the density of hydrogen gas at NTP is $0.0000893 \mathrm{gm} / \mathrm{cm}^{3}$, then the root mean square velocity of molecules of hydrogen molecules at NTP is

1 $1840 \mathrm{~cm} / \mathrm{sec}$
2 $184.0 \mathrm{~cm} / \mathrm{sec}$
3 $1840 \mathrm{~m} / \mathrm{sec}$
4 $184.0 \mathrm{~m} / \mathrm{sec}$
Kinetic Theory of Gases

139248 The temperature at which the velocity of oxygen will be half that of hydrogen at NTP is

1 $1092^{\circ} \mathrm{C}$
2 $1492^{\circ} \mathrm{C}$
3 $273 \mathrm{~K}$
4 $819^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139250 The speed of sound through a gaseous medium bears a constant ratio with the rms speed of its molecules. This constant ratio is :

1 $\gamma$
2 $\sqrt{\frac{2 \gamma}{3}}$
3 $\gamma-1$
4 $\sqrt{\frac{\gamma}{3}}$
Kinetic Theory of Gases

139252 For a gas molecule with 6 degrees of freedom the law of equipartition of energy gives the following relation between the molar specific heat $\left(C_{V}\right)$ and constant $(R)$

1 $\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{R}}{2}$
2 $\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\mathrm{C}_{\mathrm{V}}=3 \mathrm{R}$
Kinetic Theory of Gases

139253 If the density of hydrogen gas at NTP is $0.0000893 \mathrm{gm} / \mathrm{cm}^{3}$, then the root mean square velocity of molecules of hydrogen molecules at NTP is

1 $1840 \mathrm{~cm} / \mathrm{sec}$
2 $184.0 \mathrm{~cm} / \mathrm{sec}$
3 $1840 \mathrm{~m} / \mathrm{sec}$
4 $184.0 \mathrm{~m} / \mathrm{sec}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here