Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139163 The average kinetic energy of a monatomic gas molecule kept at temperature $27^{\circ} \mathrm{C}$ is (Boltzmann constant $\mathrm{k}=\mathbf{1 . 3} \times 10^{-23} \mathrm{JK}^{-1}$ )

1 $5.85 \times 10^{-21} \mathrm{~J}$
2 $4.12 \times 10^{-21} \mathrm{~J}$
3 $3.75 \times 10^{-21} \mathrm{~J}$
4 $2.85 \times 10^{-21} \mathrm{~J}$
5 $7.55 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139165 If the rms velocity of a perfect gas at $27^{\circ} \mathrm{C}$ is $500 \mathrm{~m} \cdot \mathrm{s}^{-1}$, the same at $927^{\circ} \mathrm{C}$ will be

1 $5000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $2000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $1000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $3000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
Kinetic Theory of Gases

139166 Equal volumes of hydrogen and oxygen gasses of atomic weights 1 and 16 respectively are found to exert equal pressure on the walls of two separate containers. The rms velocities of the two gasses are in the ratio

1 $1: 4$
2 $4: 1$
3 $1: 32$
4 $32: 1$
Kinetic Theory of Gases

139167 If $\bar{\lambda}$ is the mean free path, $m$ is the mass of the gas molecule, $\rho$ is the density of the gas, $T$ is the absolute temperature of the gas and $P$ is the pressure of the gas, then which of the following relation is false.

1 $\bar{\lambda} \propto m$
2 $\bar{\lambda} \propto \frac{1}{\rho}$
3 $\bar{\lambda} \propto T$
4 $\bar{\lambda} \propto \frac{1}{\mathrm{p}^{2}}$
Kinetic Theory of Gases

139163 The average kinetic energy of a monatomic gas molecule kept at temperature $27^{\circ} \mathrm{C}$ is (Boltzmann constant $\mathrm{k}=\mathbf{1 . 3} \times 10^{-23} \mathrm{JK}^{-1}$ )

1 $5.85 \times 10^{-21} \mathrm{~J}$
2 $4.12 \times 10^{-21} \mathrm{~J}$
3 $3.75 \times 10^{-21} \mathrm{~J}$
4 $2.85 \times 10^{-21} \mathrm{~J}$
5 $7.55 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139165 If the rms velocity of a perfect gas at $27^{\circ} \mathrm{C}$ is $500 \mathrm{~m} \cdot \mathrm{s}^{-1}$, the same at $927^{\circ} \mathrm{C}$ will be

1 $5000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $2000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $1000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $3000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
Kinetic Theory of Gases

139166 Equal volumes of hydrogen and oxygen gasses of atomic weights 1 and 16 respectively are found to exert equal pressure on the walls of two separate containers. The rms velocities of the two gasses are in the ratio

1 $1: 4$
2 $4: 1$
3 $1: 32$
4 $32: 1$
Kinetic Theory of Gases

139167 If $\bar{\lambda}$ is the mean free path, $m$ is the mass of the gas molecule, $\rho$ is the density of the gas, $T$ is the absolute temperature of the gas and $P$ is the pressure of the gas, then which of the following relation is false.

1 $\bar{\lambda} \propto m$
2 $\bar{\lambda} \propto \frac{1}{\rho}$
3 $\bar{\lambda} \propto T$
4 $\bar{\lambda} \propto \frac{1}{\mathrm{p}^{2}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139163 The average kinetic energy of a monatomic gas molecule kept at temperature $27^{\circ} \mathrm{C}$ is (Boltzmann constant $\mathrm{k}=\mathbf{1 . 3} \times 10^{-23} \mathrm{JK}^{-1}$ )

1 $5.85 \times 10^{-21} \mathrm{~J}$
2 $4.12 \times 10^{-21} \mathrm{~J}$
3 $3.75 \times 10^{-21} \mathrm{~J}$
4 $2.85 \times 10^{-21} \mathrm{~J}$
5 $7.55 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139165 If the rms velocity of a perfect gas at $27^{\circ} \mathrm{C}$ is $500 \mathrm{~m} \cdot \mathrm{s}^{-1}$, the same at $927^{\circ} \mathrm{C}$ will be

1 $5000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $2000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $1000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $3000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
Kinetic Theory of Gases

139166 Equal volumes of hydrogen and oxygen gasses of atomic weights 1 and 16 respectively are found to exert equal pressure on the walls of two separate containers. The rms velocities of the two gasses are in the ratio

1 $1: 4$
2 $4: 1$
3 $1: 32$
4 $32: 1$
Kinetic Theory of Gases

139167 If $\bar{\lambda}$ is the mean free path, $m$ is the mass of the gas molecule, $\rho$ is the density of the gas, $T$ is the absolute temperature of the gas and $P$ is the pressure of the gas, then which of the following relation is false.

1 $\bar{\lambda} \propto m$
2 $\bar{\lambda} \propto \frac{1}{\rho}$
3 $\bar{\lambda} \propto T$
4 $\bar{\lambda} \propto \frac{1}{\mathrm{p}^{2}}$
Kinetic Theory of Gases

139163 The average kinetic energy of a monatomic gas molecule kept at temperature $27^{\circ} \mathrm{C}$ is (Boltzmann constant $\mathrm{k}=\mathbf{1 . 3} \times 10^{-23} \mathrm{JK}^{-1}$ )

1 $5.85 \times 10^{-21} \mathrm{~J}$
2 $4.12 \times 10^{-21} \mathrm{~J}$
3 $3.75 \times 10^{-21} \mathrm{~J}$
4 $2.85 \times 10^{-21} \mathrm{~J}$
5 $7.55 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139165 If the rms velocity of a perfect gas at $27^{\circ} \mathrm{C}$ is $500 \mathrm{~m} \cdot \mathrm{s}^{-1}$, the same at $927^{\circ} \mathrm{C}$ will be

1 $5000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $2000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $1000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $3000 \mathrm{~m} \cdot \mathrm{s}^{-1}$
Kinetic Theory of Gases

139166 Equal volumes of hydrogen and oxygen gasses of atomic weights 1 and 16 respectively are found to exert equal pressure on the walls of two separate containers. The rms velocities of the two gasses are in the ratio

1 $1: 4$
2 $4: 1$
3 $1: 32$
4 $32: 1$
Kinetic Theory of Gases

139167 If $\bar{\lambda}$ is the mean free path, $m$ is the mass of the gas molecule, $\rho$ is the density of the gas, $T$ is the absolute temperature of the gas and $P$ is the pressure of the gas, then which of the following relation is false.

1 $\bar{\lambda} \propto m$
2 $\bar{\lambda} \propto \frac{1}{\rho}$
3 $\bar{\lambda} \propto T$
4 $\bar{\lambda} \propto \frac{1}{\mathrm{p}^{2}}$