Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139311 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $3 \times 10^{4} \mathrm{~J}$
2 $5 \times 10^{4} \mathrm{~J}$
3 $6 \times 10^{4} \mathrm{~J}$
4 $7 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139131 A vessel contains 3 moles of $\mathrm{He}, 1$ mole of $\mathrm{Ar}, 5$ moles of $\mathrm{N}_{2}$ and 3 moles of $\mathrm{H}_{2}$. If the vibrational modes are ignored, the total internal energy of the system of gases is-

1 $20 \mathrm{RT}$
2 $26 \mathrm{RT}$
3 $25 \mathrm{RT}$
4 $30 \mathrm{RT}$
Kinetic Theory of Gases

139133 The number of vibrational degrees of freedom of a diatomic molecule is

1 0
2 1
3 2
4 3
Kinetic Theory of Gases

139134 The number of rotational degrees of freedom of a diatomic molecule

1 0
2 1
3 2
4 3
Kinetic Theory of Gases

139311 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $3 \times 10^{4} \mathrm{~J}$
2 $5 \times 10^{4} \mathrm{~J}$
3 $6 \times 10^{4} \mathrm{~J}$
4 $7 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139131 A vessel contains 3 moles of $\mathrm{He}, 1$ mole of $\mathrm{Ar}, 5$ moles of $\mathrm{N}_{2}$ and 3 moles of $\mathrm{H}_{2}$. If the vibrational modes are ignored, the total internal energy of the system of gases is-

1 $20 \mathrm{RT}$
2 $26 \mathrm{RT}$
3 $25 \mathrm{RT}$
4 $30 \mathrm{RT}$
Kinetic Theory of Gases

139133 The number of vibrational degrees of freedom of a diatomic molecule is

1 0
2 1
3 2
4 3
Kinetic Theory of Gases

139134 The number of rotational degrees of freedom of a diatomic molecule

1 0
2 1
3 2
4 3
Kinetic Theory of Gases

139311 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $3 \times 10^{4} \mathrm{~J}$
2 $5 \times 10^{4} \mathrm{~J}$
3 $6 \times 10^{4} \mathrm{~J}$
4 $7 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139131 A vessel contains 3 moles of $\mathrm{He}, 1$ mole of $\mathrm{Ar}, 5$ moles of $\mathrm{N}_{2}$ and 3 moles of $\mathrm{H}_{2}$. If the vibrational modes are ignored, the total internal energy of the system of gases is-

1 $20 \mathrm{RT}$
2 $26 \mathrm{RT}$
3 $25 \mathrm{RT}$
4 $30 \mathrm{RT}$
Kinetic Theory of Gases

139133 The number of vibrational degrees of freedom of a diatomic molecule is

1 0
2 1
3 2
4 3
Kinetic Theory of Gases

139134 The number of rotational degrees of freedom of a diatomic molecule

1 0
2 1
3 2
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139311 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $3 \times 10^{4} \mathrm{~J}$
2 $5 \times 10^{4} \mathrm{~J}$
3 $6 \times 10^{4} \mathrm{~J}$
4 $7 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139131 A vessel contains 3 moles of $\mathrm{He}, 1$ mole of $\mathrm{Ar}, 5$ moles of $\mathrm{N}_{2}$ and 3 moles of $\mathrm{H}_{2}$. If the vibrational modes are ignored, the total internal energy of the system of gases is-

1 $20 \mathrm{RT}$
2 $26 \mathrm{RT}$
3 $25 \mathrm{RT}$
4 $30 \mathrm{RT}$
Kinetic Theory of Gases

139133 The number of vibrational degrees of freedom of a diatomic molecule is

1 0
2 1
3 2
4 3
Kinetic Theory of Gases

139134 The number of rotational degrees of freedom of a diatomic molecule

1 0
2 1
3 2
4 3