139100
Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:
139102
A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )
139100
Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:
139102
A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )
139100
Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:
139102
A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )
139100
Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:
139102
A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )
139100
Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:
139102
A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )