Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139130 The r.m.s speed of molecules of an ideal gas at $27^{\circ} \mathrm{C}$ is $200 \mathrm{~ms}^{-1}$, when the temperature is increased to $327^{\circ} \mathrm{C}$, the r.m.s. speed of the molecules is changed to

1 $490.2 \mathrm{~ms}^{-1}$
2 $315.2 \mathrm{~ms}^{-1}$
3 $282.8 \mathrm{~ms}^{-1}$
4 $425.5 \mathrm{~ms}^{-1}$
5 $515.7 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139132 A vessel containing nitrogen gas is supplied a heat of $498 \mathrm{~J}$, so as to raise the temperature of the gas by $40^{\circ} \mathrm{C}$ at constant pressure. The mass of nitrogen gas in the vessel is
(Molecular mass of nitrogen $=\mathbf{2 8} \mathrm{g}$; Universal gas constant $=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 $18 \mathrm{~g}$
2 $12 \mathrm{~g}$
3 $20 \mathrm{~g}$
4 $15 \mathrm{~g}$
Kinetic Theory of Gases

139136 Two boxes are at the same temperature. The first box contains gas with molecular mass $m_{1}$ and rms speed $v_{1}$. The second box contains gas with molecular mass $m_{2}$ and average speed $v_{2}$.
$\text { If } \mathrm{v}_{1}=1.5 \mathrm{v}_{2} \text {, then } \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \text { is - }$

1 1.25
2 0.74
3 0.52
4 0.26
Kinetic Theory of Gases

139138 The rms speed of oxygen at room temperature is about $500 \mathrm{~ms}^{-1}$. The rms speed of hydrogen at the same temperature is about.

1 $125 \mathrm{~ms}^{-1}$
2 $2000 \mathrm{~ms}^{-1}$
3 $8000 \mathrm{~ms}^{-1}$
4 $500 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139139 A gas has $n$ degrees of freedom. The ratio of specific heat of gas at constant volume to the specific heat of gas at constant pressure will be:

1 $\frac{\mathrm{n}}{\mathrm{n}+2}$
2 $\frac{\mathrm{n}+2}{\mathrm{n}}$
3 $\frac{n}{2 n+2}$
4 $\frac{\mathrm{n}}{\mathrm{n}-2}$
Kinetic Theory of Gases

139130 The r.m.s speed of molecules of an ideal gas at $27^{\circ} \mathrm{C}$ is $200 \mathrm{~ms}^{-1}$, when the temperature is increased to $327^{\circ} \mathrm{C}$, the r.m.s. speed of the molecules is changed to

1 $490.2 \mathrm{~ms}^{-1}$
2 $315.2 \mathrm{~ms}^{-1}$
3 $282.8 \mathrm{~ms}^{-1}$
4 $425.5 \mathrm{~ms}^{-1}$
5 $515.7 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139132 A vessel containing nitrogen gas is supplied a heat of $498 \mathrm{~J}$, so as to raise the temperature of the gas by $40^{\circ} \mathrm{C}$ at constant pressure. The mass of nitrogen gas in the vessel is
(Molecular mass of nitrogen $=\mathbf{2 8} \mathrm{g}$; Universal gas constant $=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 $18 \mathrm{~g}$
2 $12 \mathrm{~g}$
3 $20 \mathrm{~g}$
4 $15 \mathrm{~g}$
Kinetic Theory of Gases

139136 Two boxes are at the same temperature. The first box contains gas with molecular mass $m_{1}$ and rms speed $v_{1}$. The second box contains gas with molecular mass $m_{2}$ and average speed $v_{2}$.
$\text { If } \mathrm{v}_{1}=1.5 \mathrm{v}_{2} \text {, then } \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \text { is - }$

1 1.25
2 0.74
3 0.52
4 0.26
Kinetic Theory of Gases

139138 The rms speed of oxygen at room temperature is about $500 \mathrm{~ms}^{-1}$. The rms speed of hydrogen at the same temperature is about.

1 $125 \mathrm{~ms}^{-1}$
2 $2000 \mathrm{~ms}^{-1}$
3 $8000 \mathrm{~ms}^{-1}$
4 $500 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139139 A gas has $n$ degrees of freedom. The ratio of specific heat of gas at constant volume to the specific heat of gas at constant pressure will be:

1 $\frac{\mathrm{n}}{\mathrm{n}+2}$
2 $\frac{\mathrm{n}+2}{\mathrm{n}}$
3 $\frac{n}{2 n+2}$
4 $\frac{\mathrm{n}}{\mathrm{n}-2}$
Kinetic Theory of Gases

139130 The r.m.s speed of molecules of an ideal gas at $27^{\circ} \mathrm{C}$ is $200 \mathrm{~ms}^{-1}$, when the temperature is increased to $327^{\circ} \mathrm{C}$, the r.m.s. speed of the molecules is changed to

1 $490.2 \mathrm{~ms}^{-1}$
2 $315.2 \mathrm{~ms}^{-1}$
3 $282.8 \mathrm{~ms}^{-1}$
4 $425.5 \mathrm{~ms}^{-1}$
5 $515.7 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139132 A vessel containing nitrogen gas is supplied a heat of $498 \mathrm{~J}$, so as to raise the temperature of the gas by $40^{\circ} \mathrm{C}$ at constant pressure. The mass of nitrogen gas in the vessel is
(Molecular mass of nitrogen $=\mathbf{2 8} \mathrm{g}$; Universal gas constant $=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 $18 \mathrm{~g}$
2 $12 \mathrm{~g}$
3 $20 \mathrm{~g}$
4 $15 \mathrm{~g}$
Kinetic Theory of Gases

139136 Two boxes are at the same temperature. The first box contains gas with molecular mass $m_{1}$ and rms speed $v_{1}$. The second box contains gas with molecular mass $m_{2}$ and average speed $v_{2}$.
$\text { If } \mathrm{v}_{1}=1.5 \mathrm{v}_{2} \text {, then } \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \text { is - }$

1 1.25
2 0.74
3 0.52
4 0.26
Kinetic Theory of Gases

139138 The rms speed of oxygen at room temperature is about $500 \mathrm{~ms}^{-1}$. The rms speed of hydrogen at the same temperature is about.

1 $125 \mathrm{~ms}^{-1}$
2 $2000 \mathrm{~ms}^{-1}$
3 $8000 \mathrm{~ms}^{-1}$
4 $500 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139139 A gas has $n$ degrees of freedom. The ratio of specific heat of gas at constant volume to the specific heat of gas at constant pressure will be:

1 $\frac{\mathrm{n}}{\mathrm{n}+2}$
2 $\frac{\mathrm{n}+2}{\mathrm{n}}$
3 $\frac{n}{2 n+2}$
4 $\frac{\mathrm{n}}{\mathrm{n}-2}$
Kinetic Theory of Gases

139130 The r.m.s speed of molecules of an ideal gas at $27^{\circ} \mathrm{C}$ is $200 \mathrm{~ms}^{-1}$, when the temperature is increased to $327^{\circ} \mathrm{C}$, the r.m.s. speed of the molecules is changed to

1 $490.2 \mathrm{~ms}^{-1}$
2 $315.2 \mathrm{~ms}^{-1}$
3 $282.8 \mathrm{~ms}^{-1}$
4 $425.5 \mathrm{~ms}^{-1}$
5 $515.7 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139132 A vessel containing nitrogen gas is supplied a heat of $498 \mathrm{~J}$, so as to raise the temperature of the gas by $40^{\circ} \mathrm{C}$ at constant pressure. The mass of nitrogen gas in the vessel is
(Molecular mass of nitrogen $=\mathbf{2 8} \mathrm{g}$; Universal gas constant $=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 $18 \mathrm{~g}$
2 $12 \mathrm{~g}$
3 $20 \mathrm{~g}$
4 $15 \mathrm{~g}$
Kinetic Theory of Gases

139136 Two boxes are at the same temperature. The first box contains gas with molecular mass $m_{1}$ and rms speed $v_{1}$. The second box contains gas with molecular mass $m_{2}$ and average speed $v_{2}$.
$\text { If } \mathrm{v}_{1}=1.5 \mathrm{v}_{2} \text {, then } \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \text { is - }$

1 1.25
2 0.74
3 0.52
4 0.26
Kinetic Theory of Gases

139138 The rms speed of oxygen at room temperature is about $500 \mathrm{~ms}^{-1}$. The rms speed of hydrogen at the same temperature is about.

1 $125 \mathrm{~ms}^{-1}$
2 $2000 \mathrm{~ms}^{-1}$
3 $8000 \mathrm{~ms}^{-1}$
4 $500 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139139 A gas has $n$ degrees of freedom. The ratio of specific heat of gas at constant volume to the specific heat of gas at constant pressure will be:

1 $\frac{\mathrm{n}}{\mathrm{n}+2}$
2 $\frac{\mathrm{n}+2}{\mathrm{n}}$
3 $\frac{n}{2 n+2}$
4 $\frac{\mathrm{n}}{\mathrm{n}-2}$
Kinetic Theory of Gases

139130 The r.m.s speed of molecules of an ideal gas at $27^{\circ} \mathrm{C}$ is $200 \mathrm{~ms}^{-1}$, when the temperature is increased to $327^{\circ} \mathrm{C}$, the r.m.s. speed of the molecules is changed to

1 $490.2 \mathrm{~ms}^{-1}$
2 $315.2 \mathrm{~ms}^{-1}$
3 $282.8 \mathrm{~ms}^{-1}$
4 $425.5 \mathrm{~ms}^{-1}$
5 $515.7 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139132 A vessel containing nitrogen gas is supplied a heat of $498 \mathrm{~J}$, so as to raise the temperature of the gas by $40^{\circ} \mathrm{C}$ at constant pressure. The mass of nitrogen gas in the vessel is
(Molecular mass of nitrogen $=\mathbf{2 8} \mathrm{g}$; Universal gas constant $=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 $18 \mathrm{~g}$
2 $12 \mathrm{~g}$
3 $20 \mathrm{~g}$
4 $15 \mathrm{~g}$
Kinetic Theory of Gases

139136 Two boxes are at the same temperature. The first box contains gas with molecular mass $m_{1}$ and rms speed $v_{1}$. The second box contains gas with molecular mass $m_{2}$ and average speed $v_{2}$.
$\text { If } \mathrm{v}_{1}=1.5 \mathrm{v}_{2} \text {, then } \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \text { is - }$

1 1.25
2 0.74
3 0.52
4 0.26
Kinetic Theory of Gases

139138 The rms speed of oxygen at room temperature is about $500 \mathrm{~ms}^{-1}$. The rms speed of hydrogen at the same temperature is about.

1 $125 \mathrm{~ms}^{-1}$
2 $2000 \mathrm{~ms}^{-1}$
3 $8000 \mathrm{~ms}^{-1}$
4 $500 \mathrm{~ms}^{-1}$
Kinetic Theory of Gases

139139 A gas has $n$ degrees of freedom. The ratio of specific heat of gas at constant volume to the specific heat of gas at constant pressure will be:

1 $\frac{\mathrm{n}}{\mathrm{n}+2}$
2 $\frac{\mathrm{n}+2}{\mathrm{n}}$
3 $\frac{n}{2 n+2}$
4 $\frac{\mathrm{n}}{\mathrm{n}-2}$