Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139126 The respective speeds of the five molecules are $1,2,3,4$ and $5 \mathrm{~km} \cdot \mathrm{s}^{-1}$. Then the ratio of their RMS velocity and the average velocity will be

1 $\sqrt{11}: \sqrt{3}$
2 $3: \sqrt{11}$
3 $1: 2$
4 $3: 4$
Kinetic Theory of Gases

139127 The ratio of the specific heats $\frac{C_{P}}{C_{V}}=\gamma$ in terms of degrees of freedom (n) is given by

1 $\left(1+\frac{n}{3}\right)$
2 $\left(1+\frac{2}{\mathrm{n}}\right)$
3 $\left(1+\frac{n}{2}\right)$
4 $\left(1+\frac{1}{\mathrm{n}}\right)$
Kinetic Theory of Gases

139128 For a gas if ratio of specific heats at constant pressure and volume is $\gamma$ then value of degrees of freedom is

1 $\frac{3 \gamma-1}{2 \gamma-1}$
2 $\frac{2}{\gamma-1}$
3 $\frac{9}{2}(\gamma-1)$
4 $\frac{25}{2}(\gamma-1)$
Kinetic Theory of Gases

139129 The root mean square velocity of hydrogen molecules at $300 \mathrm{~K}$ is $1930 \mathrm{~m} / \mathrm{s}$. The rms velocity of oxygen molecules at $1200 \mathrm{~K}$ will be-

1 $765 \mathrm{~m} / \mathrm{s}$
2 $1065 \mathrm{~m} / \mathrm{s}$
3 $965 \mathrm{~m} / \mathrm{s}$
4 $865 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139126 The respective speeds of the five molecules are $1,2,3,4$ and $5 \mathrm{~km} \cdot \mathrm{s}^{-1}$. Then the ratio of their RMS velocity and the average velocity will be

1 $\sqrt{11}: \sqrt{3}$
2 $3: \sqrt{11}$
3 $1: 2$
4 $3: 4$
Kinetic Theory of Gases

139127 The ratio of the specific heats $\frac{C_{P}}{C_{V}}=\gamma$ in terms of degrees of freedom (n) is given by

1 $\left(1+\frac{n}{3}\right)$
2 $\left(1+\frac{2}{\mathrm{n}}\right)$
3 $\left(1+\frac{n}{2}\right)$
4 $\left(1+\frac{1}{\mathrm{n}}\right)$
Kinetic Theory of Gases

139128 For a gas if ratio of specific heats at constant pressure and volume is $\gamma$ then value of degrees of freedom is

1 $\frac{3 \gamma-1}{2 \gamma-1}$
2 $\frac{2}{\gamma-1}$
3 $\frac{9}{2}(\gamma-1)$
4 $\frac{25}{2}(\gamma-1)$
Kinetic Theory of Gases

139129 The root mean square velocity of hydrogen molecules at $300 \mathrm{~K}$ is $1930 \mathrm{~m} / \mathrm{s}$. The rms velocity of oxygen molecules at $1200 \mathrm{~K}$ will be-

1 $765 \mathrm{~m} / \mathrm{s}$
2 $1065 \mathrm{~m} / \mathrm{s}$
3 $965 \mathrm{~m} / \mathrm{s}$
4 $865 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139126 The respective speeds of the five molecules are $1,2,3,4$ and $5 \mathrm{~km} \cdot \mathrm{s}^{-1}$. Then the ratio of their RMS velocity and the average velocity will be

1 $\sqrt{11}: \sqrt{3}$
2 $3: \sqrt{11}$
3 $1: 2$
4 $3: 4$
Kinetic Theory of Gases

139127 The ratio of the specific heats $\frac{C_{P}}{C_{V}}=\gamma$ in terms of degrees of freedom (n) is given by

1 $\left(1+\frac{n}{3}\right)$
2 $\left(1+\frac{2}{\mathrm{n}}\right)$
3 $\left(1+\frac{n}{2}\right)$
4 $\left(1+\frac{1}{\mathrm{n}}\right)$
Kinetic Theory of Gases

139128 For a gas if ratio of specific heats at constant pressure and volume is $\gamma$ then value of degrees of freedom is

1 $\frac{3 \gamma-1}{2 \gamma-1}$
2 $\frac{2}{\gamma-1}$
3 $\frac{9}{2}(\gamma-1)$
4 $\frac{25}{2}(\gamma-1)$
Kinetic Theory of Gases

139129 The root mean square velocity of hydrogen molecules at $300 \mathrm{~K}$ is $1930 \mathrm{~m} / \mathrm{s}$. The rms velocity of oxygen molecules at $1200 \mathrm{~K}$ will be-

1 $765 \mathrm{~m} / \mathrm{s}$
2 $1065 \mathrm{~m} / \mathrm{s}$
3 $965 \mathrm{~m} / \mathrm{s}$
4 $865 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139126 The respective speeds of the five molecules are $1,2,3,4$ and $5 \mathrm{~km} \cdot \mathrm{s}^{-1}$. Then the ratio of their RMS velocity and the average velocity will be

1 $\sqrt{11}: \sqrt{3}$
2 $3: \sqrt{11}$
3 $1: 2$
4 $3: 4$
Kinetic Theory of Gases

139127 The ratio of the specific heats $\frac{C_{P}}{C_{V}}=\gamma$ in terms of degrees of freedom (n) is given by

1 $\left(1+\frac{n}{3}\right)$
2 $\left(1+\frac{2}{\mathrm{n}}\right)$
3 $\left(1+\frac{n}{2}\right)$
4 $\left(1+\frac{1}{\mathrm{n}}\right)$
Kinetic Theory of Gases

139128 For a gas if ratio of specific heats at constant pressure and volume is $\gamma$ then value of degrees of freedom is

1 $\frac{3 \gamma-1}{2 \gamma-1}$
2 $\frac{2}{\gamma-1}$
3 $\frac{9}{2}(\gamma-1)$
4 $\frac{25}{2}(\gamma-1)$
Kinetic Theory of Gases

139129 The root mean square velocity of hydrogen molecules at $300 \mathrm{~K}$ is $1930 \mathrm{~m} / \mathrm{s}$. The rms velocity of oxygen molecules at $1200 \mathrm{~K}$ will be-

1 $765 \mathrm{~m} / \mathrm{s}$
2 $1065 \mathrm{~m} / \mathrm{s}$
3 $965 \mathrm{~m} / \mathrm{s}$
4 $865 \mathrm{~m} / \mathrm{s}$