Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139099 The temperature at which the kinetic energy of oxygen molecules becomes double than its value at $27^{\circ} \mathrm{C}$ is

1 $1227^{\circ} \mathrm{C}$
2 $927^{\circ} \mathrm{C}$
3 $327^{\circ} \mathrm{C}$
4 $627^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139100 Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:

1 (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
2 (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
3 (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
4 (A) - (I), (B) - (IV), (C) - (III), (D) - (II)
Kinetic Theory of Gases

139101 A gas mixture consists of 2 moles of oxygen and 4 moles of neon at temperature $T$. Neglecting all vibrational mode, the total internal energy of the system will be:

1 $8 \mathrm{RT}$
2 $16 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139102 A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )

1 1
2 2
3 $\frac{39.9}{2}$
4 39.9
Kinetic Theory of Gases

139103 If the r.m.s. speed of chlorine molecule is 490 $\mathrm{m} / \mathrm{s}$ at $27^{\circ} \mathrm{C}$, the r.m.s. speed of argon molecules at the same temperature will be (Atomic mass of argon $=39.9 \mathrm{u}$, molecular mass of chlorine $=70.9 \mathrm{u}$ )

1 $751.7 \mathrm{~m} / \mathrm{s}$
2 $451.7 \mathrm{~m} / \mathrm{s}$
3 $651.7 \mathrm{~m} / \mathrm{s}$
4 $551.7 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139099 The temperature at which the kinetic energy of oxygen molecules becomes double than its value at $27^{\circ} \mathrm{C}$ is

1 $1227^{\circ} \mathrm{C}$
2 $927^{\circ} \mathrm{C}$
3 $327^{\circ} \mathrm{C}$
4 $627^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139100 Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:

1 (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
2 (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
3 (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
4 (A) - (I), (B) - (IV), (C) - (III), (D) - (II)
Kinetic Theory of Gases

139101 A gas mixture consists of 2 moles of oxygen and 4 moles of neon at temperature $T$. Neglecting all vibrational mode, the total internal energy of the system will be:

1 $8 \mathrm{RT}$
2 $16 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139102 A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )

1 1
2 2
3 $\frac{39.9}{2}$
4 39.9
Kinetic Theory of Gases

139103 If the r.m.s. speed of chlorine molecule is 490 $\mathrm{m} / \mathrm{s}$ at $27^{\circ} \mathrm{C}$, the r.m.s. speed of argon molecules at the same temperature will be (Atomic mass of argon $=39.9 \mathrm{u}$, molecular mass of chlorine $=70.9 \mathrm{u}$ )

1 $751.7 \mathrm{~m} / \mathrm{s}$
2 $451.7 \mathrm{~m} / \mathrm{s}$
3 $651.7 \mathrm{~m} / \mathrm{s}$
4 $551.7 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139099 The temperature at which the kinetic energy of oxygen molecules becomes double than its value at $27^{\circ} \mathrm{C}$ is

1 $1227^{\circ} \mathrm{C}$
2 $927^{\circ} \mathrm{C}$
3 $327^{\circ} \mathrm{C}$
4 $627^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139100 Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:

1 (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
2 (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
3 (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
4 (A) - (I), (B) - (IV), (C) - (III), (D) - (II)
Kinetic Theory of Gases

139101 A gas mixture consists of 2 moles of oxygen and 4 moles of neon at temperature $T$. Neglecting all vibrational mode, the total internal energy of the system will be:

1 $8 \mathrm{RT}$
2 $16 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139102 A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )

1 1
2 2
3 $\frac{39.9}{2}$
4 39.9
Kinetic Theory of Gases

139103 If the r.m.s. speed of chlorine molecule is 490 $\mathrm{m} / \mathrm{s}$ at $27^{\circ} \mathrm{C}$, the r.m.s. speed of argon molecules at the same temperature will be (Atomic mass of argon $=39.9 \mathrm{u}$, molecular mass of chlorine $=70.9 \mathrm{u}$ )

1 $751.7 \mathrm{~m} / \mathrm{s}$
2 $451.7 \mathrm{~m} / \mathrm{s}$
3 $651.7 \mathrm{~m} / \mathrm{s}$
4 $551.7 \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139099 The temperature at which the kinetic energy of oxygen molecules becomes double than its value at $27^{\circ} \mathrm{C}$ is

1 $1227^{\circ} \mathrm{C}$
2 $927^{\circ} \mathrm{C}$
3 $327^{\circ} \mathrm{C}$
4 $627^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139100 Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:

1 (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
2 (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
3 (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
4 (A) - (I), (B) - (IV), (C) - (III), (D) - (II)
Kinetic Theory of Gases

139101 A gas mixture consists of 2 moles of oxygen and 4 moles of neon at temperature $T$. Neglecting all vibrational mode, the total internal energy of the system will be:

1 $8 \mathrm{RT}$
2 $16 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139102 A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )

1 1
2 2
3 $\frac{39.9}{2}$
4 39.9
Kinetic Theory of Gases

139103 If the r.m.s. speed of chlorine molecule is 490 $\mathrm{m} / \mathrm{s}$ at $27^{\circ} \mathrm{C}$, the r.m.s. speed of argon molecules at the same temperature will be (Atomic mass of argon $=39.9 \mathrm{u}$, molecular mass of chlorine $=70.9 \mathrm{u}$ )

1 $751.7 \mathrm{~m} / \mathrm{s}$
2 $451.7 \mathrm{~m} / \mathrm{s}$
3 $651.7 \mathrm{~m} / \mathrm{s}$
4 $551.7 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139099 The temperature at which the kinetic energy of oxygen molecules becomes double than its value at $27^{\circ} \mathrm{C}$ is

1 $1227^{\circ} \mathrm{C}$
2 $927^{\circ} \mathrm{C}$
3 $327^{\circ} \mathrm{C}$
4 $627^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139100 Match List I with List II:
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | 3 Translational degrees of freedom | (I) | Monoatomic gases |
| (B) | 3 Translational, 2 rotational degres of freedom | (II) | Polyatomic gases |
| (C) | 3 Translational, 2 rotational and 1 vibrational degrees of freedom | (III) | Rigid diatomic gases |
| (D) | 3 translational, 3 rotational and more than one vibrational degrees of freedom | (IV) | Nonrigid diatomic gases |
Choose the correct answer from the options given below:

1 (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
2 (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
3 (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
4 (A) - (I), (B) - (IV), (C) - (III), (D) - (II)
Kinetic Theory of Gases

139101 A gas mixture consists of 2 moles of oxygen and 4 moles of neon at temperature $T$. Neglecting all vibrational mode, the total internal energy of the system will be:

1 $8 \mathrm{RT}$
2 $16 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139102 A flask contains Hydrogen and Argon in the ratio 2:1 by mass. The temperature of the mixture is $30^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of the two gases
$\left(K_{\text {argon }} / K_{\text {hydrogen }}\right)$ is: (Given: Atomic Weight of $\mathbf{A r}=39.9$ )

1 1
2 2
3 $\frac{39.9}{2}$
4 39.9
Kinetic Theory of Gases

139103 If the r.m.s. speed of chlorine molecule is 490 $\mathrm{m} / \mathrm{s}$ at $27^{\circ} \mathrm{C}$, the r.m.s. speed of argon molecules at the same temperature will be (Atomic mass of argon $=39.9 \mathrm{u}$, molecular mass of chlorine $=70.9 \mathrm{u}$ )

1 $751.7 \mathrm{~m} / \mathrm{s}$
2 $451.7 \mathrm{~m} / \mathrm{s}$
3 $651.7 \mathrm{~m} / \mathrm{s}$
4 $551.7 \mathrm{~m} / \mathrm{s}$