Ideal Gas Equation and Vander Waal equation
Kinetic Theory of Gases

138996 An ideal gas at temperature $T$, pressure $p$ occupies a volume $V$. If its temperature is halved and pressure doubled, what is its new volume?

1 $\frac{\mathrm{V}}{4}$
2 $\frac{\mathrm{V}}{2}$
3 $\mathrm{V}$
4 $2 \mathrm{~V}$
Kinetic Theory of Gases

138998 A cyclic process on 1 mole of an ideal gas is shown in the figure. The temperatures of the gas at points $A$ and $B$ are respectively $200 \mathrm{~K}$ and $400 \mathrm{~K}$. A total of $200 \mathrm{~J}$ of heat is taken out from the system in the process. What is the work done by the gas in the process $B \rightarrow C$ ? (Let $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )

1 $-1660 \mathrm{~J}$
2 $1660 \mathrm{~J}$
3 $-1860 \mathrm{~J}$
4 $+1860 \mathrm{~J}$
Kinetic Theory of Gases

138999 Molecular weight of oxygen is 32 amu. At STP, volume of $1 \mathrm{gm}$ of oxygen is $700 \mathrm{~cm}^{3}$. What is the value of gas constant $R$ ?

1 $18.23 \mathrm{~J} \mathrm{Mol}^{-1} \mathrm{~K}^{-1}$
2 $27.73 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $37.97 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139000 A thermally insulated piston divides a container into a two compartments. The volume, temperature and pressure in the right compartment are $2 \mathrm{~V}, \mathrm{~T}$ and $2 \mathrm{P}$, while in the left compartment the corresponding parameters are $V, T$ and $P$. Then the ratio of number of molecules in the right compartment to that in the left compartment is

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $1: 4$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

138996 An ideal gas at temperature $T$, pressure $p$ occupies a volume $V$. If its temperature is halved and pressure doubled, what is its new volume?

1 $\frac{\mathrm{V}}{4}$
2 $\frac{\mathrm{V}}{2}$
3 $\mathrm{V}$
4 $2 \mathrm{~V}$
Kinetic Theory of Gases

138998 A cyclic process on 1 mole of an ideal gas is shown in the figure. The temperatures of the gas at points $A$ and $B$ are respectively $200 \mathrm{~K}$ and $400 \mathrm{~K}$. A total of $200 \mathrm{~J}$ of heat is taken out from the system in the process. What is the work done by the gas in the process $B \rightarrow C$ ? (Let $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )

1 $-1660 \mathrm{~J}$
2 $1660 \mathrm{~J}$
3 $-1860 \mathrm{~J}$
4 $+1860 \mathrm{~J}$
Kinetic Theory of Gases

138999 Molecular weight of oxygen is 32 amu. At STP, volume of $1 \mathrm{gm}$ of oxygen is $700 \mathrm{~cm}^{3}$. What is the value of gas constant $R$ ?

1 $18.23 \mathrm{~J} \mathrm{Mol}^{-1} \mathrm{~K}^{-1}$
2 $27.73 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $37.97 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139000 A thermally insulated piston divides a container into a two compartments. The volume, temperature and pressure in the right compartment are $2 \mathrm{~V}, \mathrm{~T}$ and $2 \mathrm{P}$, while in the left compartment the corresponding parameters are $V, T$ and $P$. Then the ratio of number of molecules in the right compartment to that in the left compartment is

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $1: 4$
Kinetic Theory of Gases

138996 An ideal gas at temperature $T$, pressure $p$ occupies a volume $V$. If its temperature is halved and pressure doubled, what is its new volume?

1 $\frac{\mathrm{V}}{4}$
2 $\frac{\mathrm{V}}{2}$
3 $\mathrm{V}$
4 $2 \mathrm{~V}$
Kinetic Theory of Gases

138998 A cyclic process on 1 mole of an ideal gas is shown in the figure. The temperatures of the gas at points $A$ and $B$ are respectively $200 \mathrm{~K}$ and $400 \mathrm{~K}$. A total of $200 \mathrm{~J}$ of heat is taken out from the system in the process. What is the work done by the gas in the process $B \rightarrow C$ ? (Let $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )

1 $-1660 \mathrm{~J}$
2 $1660 \mathrm{~J}$
3 $-1860 \mathrm{~J}$
4 $+1860 \mathrm{~J}$
Kinetic Theory of Gases

138999 Molecular weight of oxygen is 32 amu. At STP, volume of $1 \mathrm{gm}$ of oxygen is $700 \mathrm{~cm}^{3}$. What is the value of gas constant $R$ ?

1 $18.23 \mathrm{~J} \mathrm{Mol}^{-1} \mathrm{~K}^{-1}$
2 $27.73 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $37.97 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139000 A thermally insulated piston divides a container into a two compartments. The volume, temperature and pressure in the right compartment are $2 \mathrm{~V}, \mathrm{~T}$ and $2 \mathrm{P}$, while in the left compartment the corresponding parameters are $V, T$ and $P$. Then the ratio of number of molecules in the right compartment to that in the left compartment is

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $1: 4$
Kinetic Theory of Gases

138996 An ideal gas at temperature $T$, pressure $p$ occupies a volume $V$. If its temperature is halved and pressure doubled, what is its new volume?

1 $\frac{\mathrm{V}}{4}$
2 $\frac{\mathrm{V}}{2}$
3 $\mathrm{V}$
4 $2 \mathrm{~V}$
Kinetic Theory of Gases

138998 A cyclic process on 1 mole of an ideal gas is shown in the figure. The temperatures of the gas at points $A$ and $B$ are respectively $200 \mathrm{~K}$ and $400 \mathrm{~K}$. A total of $200 \mathrm{~J}$ of heat is taken out from the system in the process. What is the work done by the gas in the process $B \rightarrow C$ ? (Let $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )

1 $-1660 \mathrm{~J}$
2 $1660 \mathrm{~J}$
3 $-1860 \mathrm{~J}$
4 $+1860 \mathrm{~J}$
Kinetic Theory of Gases

138999 Molecular weight of oxygen is 32 amu. At STP, volume of $1 \mathrm{gm}$ of oxygen is $700 \mathrm{~cm}^{3}$. What is the value of gas constant $R$ ?

1 $18.23 \mathrm{~J} \mathrm{Mol}^{-1} \mathrm{~K}^{-1}$
2 $27.73 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $37.97 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139000 A thermally insulated piston divides a container into a two compartments. The volume, temperature and pressure in the right compartment are $2 \mathrm{~V}, \mathrm{~T}$ and $2 \mathrm{P}$, while in the left compartment the corresponding parameters are $V, T$ and $P$. Then the ratio of number of molecules in the right compartment to that in the left compartment is

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $1: 4$