Electron Transition, Energy Emitted, Frequecy, Wave Number
ATOMS

145771 Two energy levels of an electron in an atom are separated by $2.3 \mathrm{eV}$. The frequency of radiation emitted when the electrons goes from higher to the lower level is

1 $6.95 \times 10^{14} \mathrm{~Hz}$
2 $3.68 \times 10^{15} \mathrm{~Hz}$
3 $5.6 \times 10^{14} \mathrm{~Hz}$
4 $9.11 \times 10^{15} \mathrm{~Hz}$
ATOMS

145772 Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant $R$ and speed of light $c$ is

1 $\mathrm{Rc}$
2 $4 \mathrm{Rc}$
3 $\frac{4}{\mathrm{Rc}}$
4 $\frac{\mathrm{Rc}}{4}$
ATOMS

145773 Calculate the highest frequency of the emitted photon in the Paschen series of spectral lines of the Hydrogen atom.

1 $3.7 \times 10^{14} \mathrm{~Hz}$
2 $9.1 \times 10^{15} \mathrm{~Hz}$
3 $10.23 \times 10^{14} \mathrm{~Hz}$
4 $29.7 \times 10^{15}$
ATOMS

145775 Electrons ejected from the surface of a metal, when light of certain frequency is incident on it, are stopped fully by a retarding potential of $3 \mathrm{~V}$. Photoelectric effect in this metallic surface begins at a frequency $6 \times 10^{14} \mathrm{~s}^{-1}$. The frequency of the incident light in $\mathrm{s}^{-1}$ is [Planck's constant $=6.4 \times 10^{-34} \mathrm{Js}$, charge on the electron $=1.6$ $\left.\times 10^{-19} \mathrm{C}\right]$

1 $7.5 \times 10^{13}$
2 $13.5 \times 10^{13}$
3 $13.5 \times 10^{14}$
4 $7.5 \times 10^{15}$
ATOMS

145776 $\Delta \lambda$ is the difference between the wavelengths of $K_{\alpha}$ line and the minimum wavelength of the continuous $X$-ray spectrum when the $X$-ray tube is operated at a voltage $V$. If the operating voltage is changed to $V / 3$, the above difference is $\Delta \lambda^{\prime}$. Then

1 $\Delta \lambda^{\prime}=5 \Delta \lambda$
2 $\Delta \lambda^{\prime}=4 \Delta \lambda$
3 $\Delta \lambda^{\prime}=3 \Delta \lambda$
4 $\Delta \lambda^{\prime} \lt 3 \lambda$
ATOMS

145771 Two energy levels of an electron in an atom are separated by $2.3 \mathrm{eV}$. The frequency of radiation emitted when the electrons goes from higher to the lower level is

1 $6.95 \times 10^{14} \mathrm{~Hz}$
2 $3.68 \times 10^{15} \mathrm{~Hz}$
3 $5.6 \times 10^{14} \mathrm{~Hz}$
4 $9.11 \times 10^{15} \mathrm{~Hz}$
ATOMS

145772 Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant $R$ and speed of light $c$ is

1 $\mathrm{Rc}$
2 $4 \mathrm{Rc}$
3 $\frac{4}{\mathrm{Rc}}$
4 $\frac{\mathrm{Rc}}{4}$
ATOMS

145773 Calculate the highest frequency of the emitted photon in the Paschen series of spectral lines of the Hydrogen atom.

1 $3.7 \times 10^{14} \mathrm{~Hz}$
2 $9.1 \times 10^{15} \mathrm{~Hz}$
3 $10.23 \times 10^{14} \mathrm{~Hz}$
4 $29.7 \times 10^{15}$
ATOMS

145775 Electrons ejected from the surface of a metal, when light of certain frequency is incident on it, are stopped fully by a retarding potential of $3 \mathrm{~V}$. Photoelectric effect in this metallic surface begins at a frequency $6 \times 10^{14} \mathrm{~s}^{-1}$. The frequency of the incident light in $\mathrm{s}^{-1}$ is [Planck's constant $=6.4 \times 10^{-34} \mathrm{Js}$, charge on the electron $=1.6$ $\left.\times 10^{-19} \mathrm{C}\right]$

1 $7.5 \times 10^{13}$
2 $13.5 \times 10^{13}$
3 $13.5 \times 10^{14}$
4 $7.5 \times 10^{15}$
ATOMS

145776 $\Delta \lambda$ is the difference between the wavelengths of $K_{\alpha}$ line and the minimum wavelength of the continuous $X$-ray spectrum when the $X$-ray tube is operated at a voltage $V$. If the operating voltage is changed to $V / 3$, the above difference is $\Delta \lambda^{\prime}$. Then

1 $\Delta \lambda^{\prime}=5 \Delta \lambda$
2 $\Delta \lambda^{\prime}=4 \Delta \lambda$
3 $\Delta \lambda^{\prime}=3 \Delta \lambda$
4 $\Delta \lambda^{\prime} \lt 3 \lambda$
ATOMS

145771 Two energy levels of an electron in an atom are separated by $2.3 \mathrm{eV}$. The frequency of radiation emitted when the electrons goes from higher to the lower level is

1 $6.95 \times 10^{14} \mathrm{~Hz}$
2 $3.68 \times 10^{15} \mathrm{~Hz}$
3 $5.6 \times 10^{14} \mathrm{~Hz}$
4 $9.11 \times 10^{15} \mathrm{~Hz}$
ATOMS

145772 Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant $R$ and speed of light $c$ is

1 $\mathrm{Rc}$
2 $4 \mathrm{Rc}$
3 $\frac{4}{\mathrm{Rc}}$
4 $\frac{\mathrm{Rc}}{4}$
ATOMS

145773 Calculate the highest frequency of the emitted photon in the Paschen series of spectral lines of the Hydrogen atom.

1 $3.7 \times 10^{14} \mathrm{~Hz}$
2 $9.1 \times 10^{15} \mathrm{~Hz}$
3 $10.23 \times 10^{14} \mathrm{~Hz}$
4 $29.7 \times 10^{15}$
ATOMS

145775 Electrons ejected from the surface of a metal, when light of certain frequency is incident on it, are stopped fully by a retarding potential of $3 \mathrm{~V}$. Photoelectric effect in this metallic surface begins at a frequency $6 \times 10^{14} \mathrm{~s}^{-1}$. The frequency of the incident light in $\mathrm{s}^{-1}$ is [Planck's constant $=6.4 \times 10^{-34} \mathrm{Js}$, charge on the electron $=1.6$ $\left.\times 10^{-19} \mathrm{C}\right]$

1 $7.5 \times 10^{13}$
2 $13.5 \times 10^{13}$
3 $13.5 \times 10^{14}$
4 $7.5 \times 10^{15}$
ATOMS

145776 $\Delta \lambda$ is the difference between the wavelengths of $K_{\alpha}$ line and the minimum wavelength of the continuous $X$-ray spectrum when the $X$-ray tube is operated at a voltage $V$. If the operating voltage is changed to $V / 3$, the above difference is $\Delta \lambda^{\prime}$. Then

1 $\Delta \lambda^{\prime}=5 \Delta \lambda$
2 $\Delta \lambda^{\prime}=4 \Delta \lambda$
3 $\Delta \lambda^{\prime}=3 \Delta \lambda$
4 $\Delta \lambda^{\prime} \lt 3 \lambda$
ATOMS

145771 Two energy levels of an electron in an atom are separated by $2.3 \mathrm{eV}$. The frequency of radiation emitted when the electrons goes from higher to the lower level is

1 $6.95 \times 10^{14} \mathrm{~Hz}$
2 $3.68 \times 10^{15} \mathrm{~Hz}$
3 $5.6 \times 10^{14} \mathrm{~Hz}$
4 $9.11 \times 10^{15} \mathrm{~Hz}$
ATOMS

145772 Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant $R$ and speed of light $c$ is

1 $\mathrm{Rc}$
2 $4 \mathrm{Rc}$
3 $\frac{4}{\mathrm{Rc}}$
4 $\frac{\mathrm{Rc}}{4}$
ATOMS

145773 Calculate the highest frequency of the emitted photon in the Paschen series of spectral lines of the Hydrogen atom.

1 $3.7 \times 10^{14} \mathrm{~Hz}$
2 $9.1 \times 10^{15} \mathrm{~Hz}$
3 $10.23 \times 10^{14} \mathrm{~Hz}$
4 $29.7 \times 10^{15}$
ATOMS

145775 Electrons ejected from the surface of a metal, when light of certain frequency is incident on it, are stopped fully by a retarding potential of $3 \mathrm{~V}$. Photoelectric effect in this metallic surface begins at a frequency $6 \times 10^{14} \mathrm{~s}^{-1}$. The frequency of the incident light in $\mathrm{s}^{-1}$ is [Planck's constant $=6.4 \times 10^{-34} \mathrm{Js}$, charge on the electron $=1.6$ $\left.\times 10^{-19} \mathrm{C}\right]$

1 $7.5 \times 10^{13}$
2 $13.5 \times 10^{13}$
3 $13.5 \times 10^{14}$
4 $7.5 \times 10^{15}$
ATOMS

145776 $\Delta \lambda$ is the difference between the wavelengths of $K_{\alpha}$ line and the minimum wavelength of the continuous $X$-ray spectrum when the $X$-ray tube is operated at a voltage $V$. If the operating voltage is changed to $V / 3$, the above difference is $\Delta \lambda^{\prime}$. Then

1 $\Delta \lambda^{\prime}=5 \Delta \lambda$
2 $\Delta \lambda^{\prime}=4 \Delta \lambda$
3 $\Delta \lambda^{\prime}=3 \Delta \lambda$
4 $\Delta \lambda^{\prime} \lt 3 \lambda$
ATOMS

145771 Two energy levels of an electron in an atom are separated by $2.3 \mathrm{eV}$. The frequency of radiation emitted when the electrons goes from higher to the lower level is

1 $6.95 \times 10^{14} \mathrm{~Hz}$
2 $3.68 \times 10^{15} \mathrm{~Hz}$
3 $5.6 \times 10^{14} \mathrm{~Hz}$
4 $9.11 \times 10^{15} \mathrm{~Hz}$
ATOMS

145772 Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant $R$ and speed of light $c$ is

1 $\mathrm{Rc}$
2 $4 \mathrm{Rc}$
3 $\frac{4}{\mathrm{Rc}}$
4 $\frac{\mathrm{Rc}}{4}$
ATOMS

145773 Calculate the highest frequency of the emitted photon in the Paschen series of spectral lines of the Hydrogen atom.

1 $3.7 \times 10^{14} \mathrm{~Hz}$
2 $9.1 \times 10^{15} \mathrm{~Hz}$
3 $10.23 \times 10^{14} \mathrm{~Hz}$
4 $29.7 \times 10^{15}$
ATOMS

145775 Electrons ejected from the surface of a metal, when light of certain frequency is incident on it, are stopped fully by a retarding potential of $3 \mathrm{~V}$. Photoelectric effect in this metallic surface begins at a frequency $6 \times 10^{14} \mathrm{~s}^{-1}$. The frequency of the incident light in $\mathrm{s}^{-1}$ is [Planck's constant $=6.4 \times 10^{-34} \mathrm{Js}$, charge on the electron $=1.6$ $\left.\times 10^{-19} \mathrm{C}\right]$

1 $7.5 \times 10^{13}$
2 $13.5 \times 10^{13}$
3 $13.5 \times 10^{14}$
4 $7.5 \times 10^{15}$
ATOMS

145776 $\Delta \lambda$ is the difference between the wavelengths of $K_{\alpha}$ line and the minimum wavelength of the continuous $X$-ray spectrum when the $X$-ray tube is operated at a voltage $V$. If the operating voltage is changed to $V / 3$, the above difference is $\Delta \lambda^{\prime}$. Then

1 $\Delta \lambda^{\prime}=5 \Delta \lambda$
2 $\Delta \lambda^{\prime}=4 \Delta \lambda$
3 $\Delta \lambda^{\prime}=3 \Delta \lambda$
4 $\Delta \lambda^{\prime} \lt 3 \lambda$