Line Spectral Of Hydrogen Atom
ATOMS

145533 The ratio of speed of electrons in the first excited state of hydrogen atom to the speed of light in vacuum is . Given, Planck's constant $=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ and permittivity of free space is $8.85 \times 10^{-12} \mathrm{~F}^{-1}$

1 $5 \times 10^{-3}$
2 $7.3 \times 10^{-3}$
3 $3.6 \times 10^{-3}$
4 $36.5 \times 10^{-3}$
ATOMS

145534 A hydrogen like atom emits radiation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when is undergoes a transition from $n=2$ to $n=1$. For the same atom, find frequency of the radiation emitted when a transition occurs from $\mathbf{n}=\mathbf{3}$ to $\mathbf{n}=1$.

1 $3.2 \times 10^{15} \mathrm{~Hz}$
2 $1.8 \times 10^{15} \mathrm{~Hz}$
3 $6.9 \times 10^{15} \mathrm{~Hz}$
4 $4.7 \times 10^{15} \mathrm{~Hz}$
ATOMS

145537 Hydrogen atom in the ground state absorbs $\Delta E$ amount of energy. If the orbital angular momentum of the electron is increased by $\frac{h}{2 \pi}(h \equiv$ Plank constant $)$, then the magnitude of $\Delta \mathrm{E}$ is

1 $12.09 \mathrm{eV}$
2 $12.75 \mathrm{eV}$
3 $10.2 \mathrm{eV}$
4 $13.6 \mathrm{eV}$
ATOMS

145538 In hydrogen atom spectra, if the ratio of wavelengths corresponding to the first of Lyman series and the first line of Balmer series is $9 \alpha$, the value of $\alpha$ is

1 0.5
2 0.8
3 0.6
4 0.4
ATOMS

145539 A mono chromatic radiation of wave length $\lambda$ is incident on a hydrogen sample in ground state the sample subsequently emits radiation of six different wave lengths, then the value of $\lambda$ is [Use ch $=1242 \mathrm{ev}-\mathrm{m}$ ]

1 $80 \mathrm{~nm}$
2 $85.5 \mathrm{~nm}$
3 $97.4 \mathrm{~nm}$
4 $100.2 \mathrm{~nm}$
ATOMS

145533 The ratio of speed of electrons in the first excited state of hydrogen atom to the speed of light in vacuum is . Given, Planck's constant $=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ and permittivity of free space is $8.85 \times 10^{-12} \mathrm{~F}^{-1}$

1 $5 \times 10^{-3}$
2 $7.3 \times 10^{-3}$
3 $3.6 \times 10^{-3}$
4 $36.5 \times 10^{-3}$
ATOMS

145534 A hydrogen like atom emits radiation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when is undergoes a transition from $n=2$ to $n=1$. For the same atom, find frequency of the radiation emitted when a transition occurs from $\mathbf{n}=\mathbf{3}$ to $\mathbf{n}=1$.

1 $3.2 \times 10^{15} \mathrm{~Hz}$
2 $1.8 \times 10^{15} \mathrm{~Hz}$
3 $6.9 \times 10^{15} \mathrm{~Hz}$
4 $4.7 \times 10^{15} \mathrm{~Hz}$
ATOMS

145537 Hydrogen atom in the ground state absorbs $\Delta E$ amount of energy. If the orbital angular momentum of the electron is increased by $\frac{h}{2 \pi}(h \equiv$ Plank constant $)$, then the magnitude of $\Delta \mathrm{E}$ is

1 $12.09 \mathrm{eV}$
2 $12.75 \mathrm{eV}$
3 $10.2 \mathrm{eV}$
4 $13.6 \mathrm{eV}$
ATOMS

145538 In hydrogen atom spectra, if the ratio of wavelengths corresponding to the first of Lyman series and the first line of Balmer series is $9 \alpha$, the value of $\alpha$ is

1 0.5
2 0.8
3 0.6
4 0.4
ATOMS

145539 A mono chromatic radiation of wave length $\lambda$ is incident on a hydrogen sample in ground state the sample subsequently emits radiation of six different wave lengths, then the value of $\lambda$ is [Use ch $=1242 \mathrm{ev}-\mathrm{m}$ ]

1 $80 \mathrm{~nm}$
2 $85.5 \mathrm{~nm}$
3 $97.4 \mathrm{~nm}$
4 $100.2 \mathrm{~nm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ATOMS

145533 The ratio of speed of electrons in the first excited state of hydrogen atom to the speed of light in vacuum is . Given, Planck's constant $=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ and permittivity of free space is $8.85 \times 10^{-12} \mathrm{~F}^{-1}$

1 $5 \times 10^{-3}$
2 $7.3 \times 10^{-3}$
3 $3.6 \times 10^{-3}$
4 $36.5 \times 10^{-3}$
ATOMS

145534 A hydrogen like atom emits radiation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when is undergoes a transition from $n=2$ to $n=1$. For the same atom, find frequency of the radiation emitted when a transition occurs from $\mathbf{n}=\mathbf{3}$ to $\mathbf{n}=1$.

1 $3.2 \times 10^{15} \mathrm{~Hz}$
2 $1.8 \times 10^{15} \mathrm{~Hz}$
3 $6.9 \times 10^{15} \mathrm{~Hz}$
4 $4.7 \times 10^{15} \mathrm{~Hz}$
ATOMS

145537 Hydrogen atom in the ground state absorbs $\Delta E$ amount of energy. If the orbital angular momentum of the electron is increased by $\frac{h}{2 \pi}(h \equiv$ Plank constant $)$, then the magnitude of $\Delta \mathrm{E}$ is

1 $12.09 \mathrm{eV}$
2 $12.75 \mathrm{eV}$
3 $10.2 \mathrm{eV}$
4 $13.6 \mathrm{eV}$
ATOMS

145538 In hydrogen atom spectra, if the ratio of wavelengths corresponding to the first of Lyman series and the first line of Balmer series is $9 \alpha$, the value of $\alpha$ is

1 0.5
2 0.8
3 0.6
4 0.4
ATOMS

145539 A mono chromatic radiation of wave length $\lambda$ is incident on a hydrogen sample in ground state the sample subsequently emits radiation of six different wave lengths, then the value of $\lambda$ is [Use ch $=1242 \mathrm{ev}-\mathrm{m}$ ]

1 $80 \mathrm{~nm}$
2 $85.5 \mathrm{~nm}$
3 $97.4 \mathrm{~nm}$
4 $100.2 \mathrm{~nm}$
ATOMS

145533 The ratio of speed of electrons in the first excited state of hydrogen atom to the speed of light in vacuum is . Given, Planck's constant $=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ and permittivity of free space is $8.85 \times 10^{-12} \mathrm{~F}^{-1}$

1 $5 \times 10^{-3}$
2 $7.3 \times 10^{-3}$
3 $3.6 \times 10^{-3}$
4 $36.5 \times 10^{-3}$
ATOMS

145534 A hydrogen like atom emits radiation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when is undergoes a transition from $n=2$ to $n=1$. For the same atom, find frequency of the radiation emitted when a transition occurs from $\mathbf{n}=\mathbf{3}$ to $\mathbf{n}=1$.

1 $3.2 \times 10^{15} \mathrm{~Hz}$
2 $1.8 \times 10^{15} \mathrm{~Hz}$
3 $6.9 \times 10^{15} \mathrm{~Hz}$
4 $4.7 \times 10^{15} \mathrm{~Hz}$
ATOMS

145537 Hydrogen atom in the ground state absorbs $\Delta E$ amount of energy. If the orbital angular momentum of the electron is increased by $\frac{h}{2 \pi}(h \equiv$ Plank constant $)$, then the magnitude of $\Delta \mathrm{E}$ is

1 $12.09 \mathrm{eV}$
2 $12.75 \mathrm{eV}$
3 $10.2 \mathrm{eV}$
4 $13.6 \mathrm{eV}$
ATOMS

145538 In hydrogen atom spectra, if the ratio of wavelengths corresponding to the first of Lyman series and the first line of Balmer series is $9 \alpha$, the value of $\alpha$ is

1 0.5
2 0.8
3 0.6
4 0.4
ATOMS

145539 A mono chromatic radiation of wave length $\lambda$ is incident on a hydrogen sample in ground state the sample subsequently emits radiation of six different wave lengths, then the value of $\lambda$ is [Use ch $=1242 \mathrm{ev}-\mathrm{m}$ ]

1 $80 \mathrm{~nm}$
2 $85.5 \mathrm{~nm}$
3 $97.4 \mathrm{~nm}$
4 $100.2 \mathrm{~nm}$
ATOMS

145533 The ratio of speed of electrons in the first excited state of hydrogen atom to the speed of light in vacuum is . Given, Planck's constant $=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ and permittivity of free space is $8.85 \times 10^{-12} \mathrm{~F}^{-1}$

1 $5 \times 10^{-3}$
2 $7.3 \times 10^{-3}$
3 $3.6 \times 10^{-3}$
4 $36.5 \times 10^{-3}$
ATOMS

145534 A hydrogen like atom emits radiation of frequency $2.7 \times 10^{15} \mathrm{~Hz}$ when is undergoes a transition from $n=2$ to $n=1$. For the same atom, find frequency of the radiation emitted when a transition occurs from $\mathbf{n}=\mathbf{3}$ to $\mathbf{n}=1$.

1 $3.2 \times 10^{15} \mathrm{~Hz}$
2 $1.8 \times 10^{15} \mathrm{~Hz}$
3 $6.9 \times 10^{15} \mathrm{~Hz}$
4 $4.7 \times 10^{15} \mathrm{~Hz}$
ATOMS

145537 Hydrogen atom in the ground state absorbs $\Delta E$ amount of energy. If the orbital angular momentum of the electron is increased by $\frac{h}{2 \pi}(h \equiv$ Plank constant $)$, then the magnitude of $\Delta \mathrm{E}$ is

1 $12.09 \mathrm{eV}$
2 $12.75 \mathrm{eV}$
3 $10.2 \mathrm{eV}$
4 $13.6 \mathrm{eV}$
ATOMS

145538 In hydrogen atom spectra, if the ratio of wavelengths corresponding to the first of Lyman series and the first line of Balmer series is $9 \alpha$, the value of $\alpha$ is

1 0.5
2 0.8
3 0.6
4 0.4
ATOMS

145539 A mono chromatic radiation of wave length $\lambda$ is incident on a hydrogen sample in ground state the sample subsequently emits radiation of six different wave lengths, then the value of $\lambda$ is [Use ch $=1242 \mathrm{ev}-\mathrm{m}$ ]

1 $80 \mathrm{~nm}$
2 $85.5 \mathrm{~nm}$
3 $97.4 \mathrm{~nm}$
4 $100.2 \mathrm{~nm}$