Law of Radioactive decay
NUCLEAR PHYSICS

147901 The half-life of ${ }^{60} \mathrm{Co}$ is approximately 5.25 years. In a sample containing $1 \mathrm{gm}$ of freshly prepared ${ }^{60} \mathrm{Co}$, how much of the isotope will be left after 21 years?

1 $125 \mathrm{mg}$
2 $62.5 \mathrm{mg}$
3 nothing will be left
4 $31.25 \mathrm{mg}$
NUCLEAR PHYSICS

147902 What amount of original radioactive material is left after 3 half-lives?

1 $6.5 \%$
2 $12.5 \%$
3 $25.5 \%$
4 $33.3 \%$
NUCLEAR PHYSICS

147903 The number of atoms of a radioactive substance of half-life $T$ is $N_{0}$ at $t=0$. The time necessary to decay from $N_{0} / 2$ atoms to $N_{0} / 10$ atoms will be

1 $\frac{5}{2} \mathrm{~T}$
2 $\mathrm{T} \log 5$
3 $\mathrm{T} \log \left[\frac{5}{2}\right]$
4 $\frac{T}{2} \log 5$
NUCLEAR PHYSICS

147904 The half-life of radioactive material is $3 \mathrm{~h}$. If the initial amount is $300 \mathrm{~g}$. Then, after $18 \mathrm{~h}$, it will remain.

1 $4.69 \mathrm{~g}$
2 $46.8 \mathrm{~g}$
3 $9.375 \mathrm{~g}$
4 93.75
NUCLEAR PHYSICS

147901 The half-life of ${ }^{60} \mathrm{Co}$ is approximately 5.25 years. In a sample containing $1 \mathrm{gm}$ of freshly prepared ${ }^{60} \mathrm{Co}$, how much of the isotope will be left after 21 years?

1 $125 \mathrm{mg}$
2 $62.5 \mathrm{mg}$
3 nothing will be left
4 $31.25 \mathrm{mg}$
NUCLEAR PHYSICS

147902 What amount of original radioactive material is left after 3 half-lives?

1 $6.5 \%$
2 $12.5 \%$
3 $25.5 \%$
4 $33.3 \%$
NUCLEAR PHYSICS

147903 The number of atoms of a radioactive substance of half-life $T$ is $N_{0}$ at $t=0$. The time necessary to decay from $N_{0} / 2$ atoms to $N_{0} / 10$ atoms will be

1 $\frac{5}{2} \mathrm{~T}$
2 $\mathrm{T} \log 5$
3 $\mathrm{T} \log \left[\frac{5}{2}\right]$
4 $\frac{T}{2} \log 5$
NUCLEAR PHYSICS

147904 The half-life of radioactive material is $3 \mathrm{~h}$. If the initial amount is $300 \mathrm{~g}$. Then, after $18 \mathrm{~h}$, it will remain.

1 $4.69 \mathrm{~g}$
2 $46.8 \mathrm{~g}$
3 $9.375 \mathrm{~g}$
4 93.75
NUCLEAR PHYSICS

147901 The half-life of ${ }^{60} \mathrm{Co}$ is approximately 5.25 years. In a sample containing $1 \mathrm{gm}$ of freshly prepared ${ }^{60} \mathrm{Co}$, how much of the isotope will be left after 21 years?

1 $125 \mathrm{mg}$
2 $62.5 \mathrm{mg}$
3 nothing will be left
4 $31.25 \mathrm{mg}$
NUCLEAR PHYSICS

147902 What amount of original radioactive material is left after 3 half-lives?

1 $6.5 \%$
2 $12.5 \%$
3 $25.5 \%$
4 $33.3 \%$
NUCLEAR PHYSICS

147903 The number of atoms of a radioactive substance of half-life $T$ is $N_{0}$ at $t=0$. The time necessary to decay from $N_{0} / 2$ atoms to $N_{0} / 10$ atoms will be

1 $\frac{5}{2} \mathrm{~T}$
2 $\mathrm{T} \log 5$
3 $\mathrm{T} \log \left[\frac{5}{2}\right]$
4 $\frac{T}{2} \log 5$
NUCLEAR PHYSICS

147904 The half-life of radioactive material is $3 \mathrm{~h}$. If the initial amount is $300 \mathrm{~g}$. Then, after $18 \mathrm{~h}$, it will remain.

1 $4.69 \mathrm{~g}$
2 $46.8 \mathrm{~g}$
3 $9.375 \mathrm{~g}$
4 93.75
NUCLEAR PHYSICS

147901 The half-life of ${ }^{60} \mathrm{Co}$ is approximately 5.25 years. In a sample containing $1 \mathrm{gm}$ of freshly prepared ${ }^{60} \mathrm{Co}$, how much of the isotope will be left after 21 years?

1 $125 \mathrm{mg}$
2 $62.5 \mathrm{mg}$
3 nothing will be left
4 $31.25 \mathrm{mg}$
NUCLEAR PHYSICS

147902 What amount of original radioactive material is left after 3 half-lives?

1 $6.5 \%$
2 $12.5 \%$
3 $25.5 \%$
4 $33.3 \%$
NUCLEAR PHYSICS

147903 The number of atoms of a radioactive substance of half-life $T$ is $N_{0}$ at $t=0$. The time necessary to decay from $N_{0} / 2$ atoms to $N_{0} / 10$ atoms will be

1 $\frac{5}{2} \mathrm{~T}$
2 $\mathrm{T} \log 5$
3 $\mathrm{T} \log \left[\frac{5}{2}\right]$
4 $\frac{T}{2} \log 5$
NUCLEAR PHYSICS

147904 The half-life of radioactive material is $3 \mathrm{~h}$. If the initial amount is $300 \mathrm{~g}$. Then, after $18 \mathrm{~h}$, it will remain.

1 $4.69 \mathrm{~g}$
2 $46.8 \mathrm{~g}$
3 $9.375 \mathrm{~g}$
4 93.75