Explanation:
C Given that, $\lambda_{\mathrm{k} \alpha}=0.71 \AA, \lambda_{\mathrm{k} \beta}=0.63 \AA$
$\mathrm{K}_{\alpha}=\mathrm{E}_{\mathrm{k}}-\mathrm{E}_{\mathrm{L}}$
$\mathrm{K}_{\beta}=\mathrm{E}_{\mathrm{k}}-\mathrm{E}_{\mathrm{M}}$
$\mathrm{L}_{\alpha}=\mathrm{E}_{\mathrm{L}^{-}} \mathrm{E}_{\mathrm{M}}$
Subtracting equation (i) from (ii), we get-
$\text { Or } \quad\mathrm{K}_{\alpha}-\mathrm{K}_{\beta}=\mathrm{E}_{\mathrm{M}}-\mathrm{E}_{\mathrm{L}}=-\mathrm{L}_{\alpha}$
$\mathrm{L}_{\alpha}=\mathrm{K}_{\beta}-\mathrm{K}_{\alpha}$
$=\frac{3 \times 10^{8}}{0.63 \times 10^{-10}}-\frac{3 \times 10^{8}}{0.71 \times 10^{-10}}$
$=4.761 \times 10^{18}-4.225 \times 10^{18}$
$=0.536 \times 10^{18} \mathrm{~Hz}$
Again, $\lambda=\frac{3 \times 10^{8}}{0.536 \times 10^{18}}$
$\lambda=5.59 \times 10^{-10}=5.59 \AA$