Radioactivity
NUCLEAR PHYSICS

147722 When a radioactive isotope ${ }_{88} R^{228}$ decays in series by the emission of $3 \alpha$-particles and $\beta$ particles, the mass number of the isotope finally formed is-

1 83
2 72
3 216
4 228
NUCLEAR PHYSICS

147730 The ratio of molecular masses of two radioactive substances is $3 / 2$ and the ratio of their decay constants is $4 / 3$. Then, the ratio of their initial activities per mole will be-

1 2
2 $4 / 3$
3 $8 / 9$
4 $9 / 8$
NUCLEAR PHYSICS

147733 A nuclear transformation is given by $Y(n, \alpha) \rightarrow_{3} \mathrm{Li}^{7}$. The nucleus of element $\mathrm{Y}$ is

1 ${ }_{5} \mathrm{Be}^{11}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{6} \mathrm{C}^{12}$
NUCLEAR PHYSICS

147738 In a radioactive decay, an element ${ }_{\mathrm{z}} \mathrm{X}^{\mathrm{A}}$ emits four $\alpha$-particles, three $\beta$-particles and eight gamma photons. The atomic number and mass number of the resulting final nucleus are :

1 $\mathrm{Z}-8, \mathrm{~A}-13$
2 $\mathrm{Z}-11, \mathrm{~A}-16$
3 $\mathrm{Z}-5, \mathrm{~A}-13$
4 $\mathrm{Z}-5, \mathrm{~A}-16$
NUCLEAR PHYSICS

147747 In deuterium, $D$ and tritium, $T$ fusion reaction $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{X}+\mathrm{n}, \mathrm{X}$ should be

1 ${ }_{1} \mathrm{H}^{3}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{2} \mathrm{He}^{4}$
4 ${ }_{1} \mathrm{H}^{1}$
NUCLEAR PHYSICS

147722 When a radioactive isotope ${ }_{88} R^{228}$ decays in series by the emission of $3 \alpha$-particles and $\beta$ particles, the mass number of the isotope finally formed is-

1 83
2 72
3 216
4 228
NUCLEAR PHYSICS

147730 The ratio of molecular masses of two radioactive substances is $3 / 2$ and the ratio of their decay constants is $4 / 3$. Then, the ratio of their initial activities per mole will be-

1 2
2 $4 / 3$
3 $8 / 9$
4 $9 / 8$
NUCLEAR PHYSICS

147733 A nuclear transformation is given by $Y(n, \alpha) \rightarrow_{3} \mathrm{Li}^{7}$. The nucleus of element $\mathrm{Y}$ is

1 ${ }_{5} \mathrm{Be}^{11}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{6} \mathrm{C}^{12}$
NUCLEAR PHYSICS

147738 In a radioactive decay, an element ${ }_{\mathrm{z}} \mathrm{X}^{\mathrm{A}}$ emits four $\alpha$-particles, three $\beta$-particles and eight gamma photons. The atomic number and mass number of the resulting final nucleus are :

1 $\mathrm{Z}-8, \mathrm{~A}-13$
2 $\mathrm{Z}-11, \mathrm{~A}-16$
3 $\mathrm{Z}-5, \mathrm{~A}-13$
4 $\mathrm{Z}-5, \mathrm{~A}-16$
NUCLEAR PHYSICS

147747 In deuterium, $D$ and tritium, $T$ fusion reaction $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{X}+\mathrm{n}, \mathrm{X}$ should be

1 ${ }_{1} \mathrm{H}^{3}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{2} \mathrm{He}^{4}$
4 ${ }_{1} \mathrm{H}^{1}$
NUCLEAR PHYSICS

147722 When a radioactive isotope ${ }_{88} R^{228}$ decays in series by the emission of $3 \alpha$-particles and $\beta$ particles, the mass number of the isotope finally formed is-

1 83
2 72
3 216
4 228
NUCLEAR PHYSICS

147730 The ratio of molecular masses of two radioactive substances is $3 / 2$ and the ratio of their decay constants is $4 / 3$. Then, the ratio of their initial activities per mole will be-

1 2
2 $4 / 3$
3 $8 / 9$
4 $9 / 8$
NUCLEAR PHYSICS

147733 A nuclear transformation is given by $Y(n, \alpha) \rightarrow_{3} \mathrm{Li}^{7}$. The nucleus of element $\mathrm{Y}$ is

1 ${ }_{5} \mathrm{Be}^{11}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{6} \mathrm{C}^{12}$
NUCLEAR PHYSICS

147738 In a radioactive decay, an element ${ }_{\mathrm{z}} \mathrm{X}^{\mathrm{A}}$ emits four $\alpha$-particles, three $\beta$-particles and eight gamma photons. The atomic number and mass number of the resulting final nucleus are :

1 $\mathrm{Z}-8, \mathrm{~A}-13$
2 $\mathrm{Z}-11, \mathrm{~A}-16$
3 $\mathrm{Z}-5, \mathrm{~A}-13$
4 $\mathrm{Z}-5, \mathrm{~A}-16$
NUCLEAR PHYSICS

147747 In deuterium, $D$ and tritium, $T$ fusion reaction $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{X}+\mathrm{n}, \mathrm{X}$ should be

1 ${ }_{1} \mathrm{H}^{3}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{2} \mathrm{He}^{4}$
4 ${ }_{1} \mathrm{H}^{1}$
NUCLEAR PHYSICS

147722 When a radioactive isotope ${ }_{88} R^{228}$ decays in series by the emission of $3 \alpha$-particles and $\beta$ particles, the mass number of the isotope finally formed is-

1 83
2 72
3 216
4 228
NUCLEAR PHYSICS

147730 The ratio of molecular masses of two radioactive substances is $3 / 2$ and the ratio of their decay constants is $4 / 3$. Then, the ratio of their initial activities per mole will be-

1 2
2 $4 / 3$
3 $8 / 9$
4 $9 / 8$
NUCLEAR PHYSICS

147733 A nuclear transformation is given by $Y(n, \alpha) \rightarrow_{3} \mathrm{Li}^{7}$. The nucleus of element $\mathrm{Y}$ is

1 ${ }_{5} \mathrm{Be}^{11}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{6} \mathrm{C}^{12}$
NUCLEAR PHYSICS

147738 In a radioactive decay, an element ${ }_{\mathrm{z}} \mathrm{X}^{\mathrm{A}}$ emits four $\alpha$-particles, three $\beta$-particles and eight gamma photons. The atomic number and mass number of the resulting final nucleus are :

1 $\mathrm{Z}-8, \mathrm{~A}-13$
2 $\mathrm{Z}-11, \mathrm{~A}-16$
3 $\mathrm{Z}-5, \mathrm{~A}-13$
4 $\mathrm{Z}-5, \mathrm{~A}-16$
NUCLEAR PHYSICS

147747 In deuterium, $D$ and tritium, $T$ fusion reaction $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{X}+\mathrm{n}, \mathrm{X}$ should be

1 ${ }_{1} \mathrm{H}^{3}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{2} \mathrm{He}^{4}$
4 ${ }_{1} \mathrm{H}^{1}$
NUCLEAR PHYSICS

147722 When a radioactive isotope ${ }_{88} R^{228}$ decays in series by the emission of $3 \alpha$-particles and $\beta$ particles, the mass number of the isotope finally formed is-

1 83
2 72
3 216
4 228
NUCLEAR PHYSICS

147730 The ratio of molecular masses of two radioactive substances is $3 / 2$ and the ratio of their decay constants is $4 / 3$. Then, the ratio of their initial activities per mole will be-

1 2
2 $4 / 3$
3 $8 / 9$
4 $9 / 8$
NUCLEAR PHYSICS

147733 A nuclear transformation is given by $Y(n, \alpha) \rightarrow_{3} \mathrm{Li}^{7}$. The nucleus of element $\mathrm{Y}$ is

1 ${ }_{5} \mathrm{Be}^{11}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{6} \mathrm{C}^{12}$
NUCLEAR PHYSICS

147738 In a radioactive decay, an element ${ }_{\mathrm{z}} \mathrm{X}^{\mathrm{A}}$ emits four $\alpha$-particles, three $\beta$-particles and eight gamma photons. The atomic number and mass number of the resulting final nucleus are :

1 $\mathrm{Z}-8, \mathrm{~A}-13$
2 $\mathrm{Z}-11, \mathrm{~A}-16$
3 $\mathrm{Z}-5, \mathrm{~A}-13$
4 $\mathrm{Z}-5, \mathrm{~A}-16$
NUCLEAR PHYSICS

147747 In deuterium, $D$ and tritium, $T$ fusion reaction $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{X}+\mathrm{n}, \mathrm{X}$ should be

1 ${ }_{1} \mathrm{H}^{3}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{2} \mathrm{He}^{4}$
4 ${ }_{1} \mathrm{H}^{1}$