Radioactivity
NUCLEAR PHYSICS

147639 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number to the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \beta, 7 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147640 The fraction of atoms of radioactive element that decays in 6 days is $7 / 8$. The fraction that decays is 10 days will be

1 $77 / 80$
2 $71 / 80$
3 $31 / 32$
4 $15 / 16$
NUCLEAR PHYSICS

147641 A nucleus $X$ initially at rest, undergoes alpha decay according to the equation
${ }_{92} \mathbf{X}^{\mathrm{A}} \rightarrow_{\mathrm{Z}} \mathbf{Y}^{228}+\alpha$
Then, the value of $A$ and $Z$ are

1 94,230
2 232,90
3 190,32
4 230,94
NUCLEAR PHYSICS

147642 A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is

1 $80 \mathrm{~min}$
2 $120 \mathrm{~min}$
3 $20 \mathrm{~min}$
4 $30 \mathrm{~min}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147639 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number to the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \beta, 7 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147640 The fraction of atoms of radioactive element that decays in 6 days is $7 / 8$. The fraction that decays is 10 days will be

1 $77 / 80$
2 $71 / 80$
3 $31 / 32$
4 $15 / 16$
NUCLEAR PHYSICS

147641 A nucleus $X$ initially at rest, undergoes alpha decay according to the equation
${ }_{92} \mathbf{X}^{\mathrm{A}} \rightarrow_{\mathrm{Z}} \mathbf{Y}^{228}+\alpha$
Then, the value of $A$ and $Z$ are

1 94,230
2 232,90
3 190,32
4 230,94
NUCLEAR PHYSICS

147642 A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is

1 $80 \mathrm{~min}$
2 $120 \mathrm{~min}$
3 $20 \mathrm{~min}$
4 $30 \mathrm{~min}$
NUCLEAR PHYSICS

147639 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number to the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \beta, 7 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147640 The fraction of atoms of radioactive element that decays in 6 days is $7 / 8$. The fraction that decays is 10 days will be

1 $77 / 80$
2 $71 / 80$
3 $31 / 32$
4 $15 / 16$
NUCLEAR PHYSICS

147641 A nucleus $X$ initially at rest, undergoes alpha decay according to the equation
${ }_{92} \mathbf{X}^{\mathrm{A}} \rightarrow_{\mathrm{Z}} \mathbf{Y}^{228}+\alpha$
Then, the value of $A$ and $Z$ are

1 94,230
2 232,90
3 190,32
4 230,94
NUCLEAR PHYSICS

147642 A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is

1 $80 \mathrm{~min}$
2 $120 \mathrm{~min}$
3 $20 \mathrm{~min}$
4 $30 \mathrm{~min}$
NUCLEAR PHYSICS

147639 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number to the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \beta, 7 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147640 The fraction of atoms of radioactive element that decays in 6 days is $7 / 8$. The fraction that decays is 10 days will be

1 $77 / 80$
2 $71 / 80$
3 $31 / 32$
4 $15 / 16$
NUCLEAR PHYSICS

147641 A nucleus $X$ initially at rest, undergoes alpha decay according to the equation
${ }_{92} \mathbf{X}^{\mathrm{A}} \rightarrow_{\mathrm{Z}} \mathbf{Y}^{228}+\alpha$
Then, the value of $A$ and $Z$ are

1 94,230
2 232,90
3 190,32
4 230,94
NUCLEAR PHYSICS

147642 A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is

1 $80 \mathrm{~min}$
2 $120 \mathrm{~min}$
3 $20 \mathrm{~min}$
4 $30 \mathrm{~min}$