Radioactivity
NUCLEAR PHYSICS

147743 Three fourths of the active nuclei present in a radioactive sample decay in $3 / 4 \mathrm{~s}$. The half life of the sample is :

1 $\frac{3}{8} \mathrm{~s}$
2 $\frac{3}{4} \mathrm{~s}$
3 $\frac{1}{2} \mathrm{~s}$
4 $1 \mathrm{~s}$
NUCLEAR PHYSICS

147745 The fraction of a sample of radioactive nuclei that remains undecayed in one mean life is

1 $\frac{1}{\mathrm{e}}$
2 $1-\frac{1}{\mathrm{e}}$
3 $\frac{1}{\mathrm{e}^{2}}$
4 $1-\frac{1}{\mathrm{e}^{2}}$
NUCLEAR PHYSICS

147746 The activity of $1 \mathrm{mg}$ sample of ${ }_{37}^{90} \mathrm{Sr}$ whose half life is 28 years is
(Given that Avogadro's number is $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ )

1 $5.24 \times 10^{9}$ disintegrations $/ \mathrm{sec}$
2 $5.24 \times 10^{10}$ disintegrations $/ \mathrm{sec}$
3 $5.24 \times 10^{8}$ disintegrations $/ \mathrm{sec}$
4 $5.24 \times 10^{11}$ disintegrations $/ \mathrm{sec}$
NUCLEAR PHYSICS

147749 A radioactive substance decays to $(1 / 16)^{\text {th }}$ of its initial activity in 40 days. The half life of the radioactive substance expressed in days is

1 2.5
2 5
3 10
4 20
NUCLEAR PHYSICS

147750 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number of the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \alpha, 4 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147743 Three fourths of the active nuclei present in a radioactive sample decay in $3 / 4 \mathrm{~s}$. The half life of the sample is :

1 $\frac{3}{8} \mathrm{~s}$
2 $\frac{3}{4} \mathrm{~s}$
3 $\frac{1}{2} \mathrm{~s}$
4 $1 \mathrm{~s}$
NUCLEAR PHYSICS

147745 The fraction of a sample of radioactive nuclei that remains undecayed in one mean life is

1 $\frac{1}{\mathrm{e}}$
2 $1-\frac{1}{\mathrm{e}}$
3 $\frac{1}{\mathrm{e}^{2}}$
4 $1-\frac{1}{\mathrm{e}^{2}}$
NUCLEAR PHYSICS

147746 The activity of $1 \mathrm{mg}$ sample of ${ }_{37}^{90} \mathrm{Sr}$ whose half life is 28 years is
(Given that Avogadro's number is $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ )

1 $5.24 \times 10^{9}$ disintegrations $/ \mathrm{sec}$
2 $5.24 \times 10^{10}$ disintegrations $/ \mathrm{sec}$
3 $5.24 \times 10^{8}$ disintegrations $/ \mathrm{sec}$
4 $5.24 \times 10^{11}$ disintegrations $/ \mathrm{sec}$
NUCLEAR PHYSICS

147749 A radioactive substance decays to $(1 / 16)^{\text {th }}$ of its initial activity in 40 days. The half life of the radioactive substance expressed in days is

1 2.5
2 5
3 10
4 20
NUCLEAR PHYSICS

147750 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number of the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \alpha, 4 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147743 Three fourths of the active nuclei present in a radioactive sample decay in $3 / 4 \mathrm{~s}$. The half life of the sample is :

1 $\frac{3}{8} \mathrm{~s}$
2 $\frac{3}{4} \mathrm{~s}$
3 $\frac{1}{2} \mathrm{~s}$
4 $1 \mathrm{~s}$
NUCLEAR PHYSICS

147745 The fraction of a sample of radioactive nuclei that remains undecayed in one mean life is

1 $\frac{1}{\mathrm{e}}$
2 $1-\frac{1}{\mathrm{e}}$
3 $\frac{1}{\mathrm{e}^{2}}$
4 $1-\frac{1}{\mathrm{e}^{2}}$
NUCLEAR PHYSICS

147746 The activity of $1 \mathrm{mg}$ sample of ${ }_{37}^{90} \mathrm{Sr}$ whose half life is 28 years is
(Given that Avogadro's number is $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ )

1 $5.24 \times 10^{9}$ disintegrations $/ \mathrm{sec}$
2 $5.24 \times 10^{10}$ disintegrations $/ \mathrm{sec}$
3 $5.24 \times 10^{8}$ disintegrations $/ \mathrm{sec}$
4 $5.24 \times 10^{11}$ disintegrations $/ \mathrm{sec}$
NUCLEAR PHYSICS

147749 A radioactive substance decays to $(1 / 16)^{\text {th }}$ of its initial activity in 40 days. The half life of the radioactive substance expressed in days is

1 2.5
2 5
3 10
4 20
NUCLEAR PHYSICS

147750 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number of the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \alpha, 4 \beta$
4 $4 \alpha, 1 \beta$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147743 Three fourths of the active nuclei present in a radioactive sample decay in $3 / 4 \mathrm{~s}$. The half life of the sample is :

1 $\frac{3}{8} \mathrm{~s}$
2 $\frac{3}{4} \mathrm{~s}$
3 $\frac{1}{2} \mathrm{~s}$
4 $1 \mathrm{~s}$
NUCLEAR PHYSICS

147745 The fraction of a sample of radioactive nuclei that remains undecayed in one mean life is

1 $\frac{1}{\mathrm{e}}$
2 $1-\frac{1}{\mathrm{e}}$
3 $\frac{1}{\mathrm{e}^{2}}$
4 $1-\frac{1}{\mathrm{e}^{2}}$
NUCLEAR PHYSICS

147746 The activity of $1 \mathrm{mg}$ sample of ${ }_{37}^{90} \mathrm{Sr}$ whose half life is 28 years is
(Given that Avogadro's number is $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ )

1 $5.24 \times 10^{9}$ disintegrations $/ \mathrm{sec}$
2 $5.24 \times 10^{10}$ disintegrations $/ \mathrm{sec}$
3 $5.24 \times 10^{8}$ disintegrations $/ \mathrm{sec}$
4 $5.24 \times 10^{11}$ disintegrations $/ \mathrm{sec}$
NUCLEAR PHYSICS

147749 A radioactive substance decays to $(1 / 16)^{\text {th }}$ of its initial activity in 40 days. The half life of the radioactive substance expressed in days is

1 2.5
2 5
3 10
4 20
NUCLEAR PHYSICS

147750 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number of the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \alpha, 4 \beta$
4 $4 \alpha, 1 \beta$
NUCLEAR PHYSICS

147743 Three fourths of the active nuclei present in a radioactive sample decay in $3 / 4 \mathrm{~s}$. The half life of the sample is :

1 $\frac{3}{8} \mathrm{~s}$
2 $\frac{3}{4} \mathrm{~s}$
3 $\frac{1}{2} \mathrm{~s}$
4 $1 \mathrm{~s}$
NUCLEAR PHYSICS

147745 The fraction of a sample of radioactive nuclei that remains undecayed in one mean life is

1 $\frac{1}{\mathrm{e}}$
2 $1-\frac{1}{\mathrm{e}}$
3 $\frac{1}{\mathrm{e}^{2}}$
4 $1-\frac{1}{\mathrm{e}^{2}}$
NUCLEAR PHYSICS

147746 The activity of $1 \mathrm{mg}$ sample of ${ }_{37}^{90} \mathrm{Sr}$ whose half life is 28 years is
(Given that Avogadro's number is $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ )

1 $5.24 \times 10^{9}$ disintegrations $/ \mathrm{sec}$
2 $5.24 \times 10^{10}$ disintegrations $/ \mathrm{sec}$
3 $5.24 \times 10^{8}$ disintegrations $/ \mathrm{sec}$
4 $5.24 \times 10^{11}$ disintegrations $/ \mathrm{sec}$
NUCLEAR PHYSICS

147749 A radioactive substance decays to $(1 / 16)^{\text {th }}$ of its initial activity in 40 days. The half life of the radioactive substance expressed in days is

1 2.5
2 5
3 10
4 20
NUCLEAR PHYSICS

147750 When ${ }_{90} \mathrm{Th}^{228}$ transforms to ${ }_{83} \mathrm{Bi}^{212}$, then the number of the emitted $\alpha$ and $\beta$-particles is, respectively

1 $8 \alpha, 7 \beta$
2 $4 \alpha, 7 \beta$
3 $4 \alpha, 4 \beta$
4 $4 \alpha, 1 \beta$