Radioactivity
NUCLEAR PHYSICS

147734 The half life for $\alpha$ - decay of uranium ${ }_{92} \mathrm{U}^{228}$ is $4.47 \times 10^{8} \mathrm{yr}$. If a rock contains $60 \%$ of original ${ }_{92} \mathrm{U}^{228}$ atoms, then its age is
[take $\log 6=0.778, \log 2=0.3$ ]

1 $1.2 \times 10^{7} \mathrm{yr}$
2 $3.3 \times 10^{8} \mathrm{yr}$
3 $4.2 \times 10^{9} \mathrm{yr}$
4 $6.5 \times 10^{9} \mathrm{yr}$
NUCLEAR PHYSICS

147735 The half life period of Radium is 3 minute. Its mean life time is

1 1.5 minute
2 $\frac{3}{0.6931}$ minute
3 6 minute
4 $(3 \times 0.6931)$ minute
NUCLEAR PHYSICS

147728 In a radioactive reaction
${ }_{92} \mathrm{X}^{232} \rightarrow{ }_{82} \mathrm{X}^{204}$
the number of $\alpha$-particles emitted is :

1 7
2 6
3 5
4 4
NUCLEAR PHYSICS

147740 Activity of a radioactive sample decreases to $(1 / 3)^{\text {rd }}$ of its original value in 3 days. Then, in 9 days its activity will become :

1 $(1 / 27)$ of the original value
2 $(1 / 9)$ of the original value
3 $(1 / 18)$ of the original value
4 $(1 / 3)$ of the original value
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147734 The half life for $\alpha$ - decay of uranium ${ }_{92} \mathrm{U}^{228}$ is $4.47 \times 10^{8} \mathrm{yr}$. If a rock contains $60 \%$ of original ${ }_{92} \mathrm{U}^{228}$ atoms, then its age is
[take $\log 6=0.778, \log 2=0.3$ ]

1 $1.2 \times 10^{7} \mathrm{yr}$
2 $3.3 \times 10^{8} \mathrm{yr}$
3 $4.2 \times 10^{9} \mathrm{yr}$
4 $6.5 \times 10^{9} \mathrm{yr}$
NUCLEAR PHYSICS

147735 The half life period of Radium is 3 minute. Its mean life time is

1 1.5 minute
2 $\frac{3}{0.6931}$ minute
3 6 minute
4 $(3 \times 0.6931)$ minute
NUCLEAR PHYSICS

147728 In a radioactive reaction
${ }_{92} \mathrm{X}^{232} \rightarrow{ }_{82} \mathrm{X}^{204}$
the number of $\alpha$-particles emitted is :

1 7
2 6
3 5
4 4
NUCLEAR PHYSICS

147740 Activity of a radioactive sample decreases to $(1 / 3)^{\text {rd }}$ of its original value in 3 days. Then, in 9 days its activity will become :

1 $(1 / 27)$ of the original value
2 $(1 / 9)$ of the original value
3 $(1 / 18)$ of the original value
4 $(1 / 3)$ of the original value
NUCLEAR PHYSICS

147734 The half life for $\alpha$ - decay of uranium ${ }_{92} \mathrm{U}^{228}$ is $4.47 \times 10^{8} \mathrm{yr}$. If a rock contains $60 \%$ of original ${ }_{92} \mathrm{U}^{228}$ atoms, then its age is
[take $\log 6=0.778, \log 2=0.3$ ]

1 $1.2 \times 10^{7} \mathrm{yr}$
2 $3.3 \times 10^{8} \mathrm{yr}$
3 $4.2 \times 10^{9} \mathrm{yr}$
4 $6.5 \times 10^{9} \mathrm{yr}$
NUCLEAR PHYSICS

147735 The half life period of Radium is 3 minute. Its mean life time is

1 1.5 minute
2 $\frac{3}{0.6931}$ minute
3 6 minute
4 $(3 \times 0.6931)$ minute
NUCLEAR PHYSICS

147728 In a radioactive reaction
${ }_{92} \mathrm{X}^{232} \rightarrow{ }_{82} \mathrm{X}^{204}$
the number of $\alpha$-particles emitted is :

1 7
2 6
3 5
4 4
NUCLEAR PHYSICS

147740 Activity of a radioactive sample decreases to $(1 / 3)^{\text {rd }}$ of its original value in 3 days. Then, in 9 days its activity will become :

1 $(1 / 27)$ of the original value
2 $(1 / 9)$ of the original value
3 $(1 / 18)$ of the original value
4 $(1 / 3)$ of the original value
NUCLEAR PHYSICS

147734 The half life for $\alpha$ - decay of uranium ${ }_{92} \mathrm{U}^{228}$ is $4.47 \times 10^{8} \mathrm{yr}$. If a rock contains $60 \%$ of original ${ }_{92} \mathrm{U}^{228}$ atoms, then its age is
[take $\log 6=0.778, \log 2=0.3$ ]

1 $1.2 \times 10^{7} \mathrm{yr}$
2 $3.3 \times 10^{8} \mathrm{yr}$
3 $4.2 \times 10^{9} \mathrm{yr}$
4 $6.5 \times 10^{9} \mathrm{yr}$
NUCLEAR PHYSICS

147735 The half life period of Radium is 3 minute. Its mean life time is

1 1.5 minute
2 $\frac{3}{0.6931}$ minute
3 6 minute
4 $(3 \times 0.6931)$ minute
NUCLEAR PHYSICS

147728 In a radioactive reaction
${ }_{92} \mathrm{X}^{232} \rightarrow{ }_{82} \mathrm{X}^{204}$
the number of $\alpha$-particles emitted is :

1 7
2 6
3 5
4 4
NUCLEAR PHYSICS

147740 Activity of a radioactive sample decreases to $(1 / 3)^{\text {rd }}$ of its original value in 3 days. Then, in 9 days its activity will become :

1 $(1 / 27)$ of the original value
2 $(1 / 9)$ of the original value
3 $(1 / 18)$ of the original value
4 $(1 / 3)$ of the original value