Composition of Nucleus
NUCLEAR PHYSICS

147497 What amount of energy is associated with mass of $2.5 \mathrm{~kg}$ ?

1 $6.27 \times 10^{17}$ joules
2 $4.27 \times 10^{17}$ joules
3 $0.27 \times 10^{17}$ joules
4 $2.25 \times 10^{17}$ joules
NUCLEAR PHYSICS

147517 $m_{p}$ denotes the mass of a proton and $m_{n}$ that of a neutron. A given nucleus of binding energy $B E$, contains $Z$ protons and $N$ neutrons. The mass $m(N, Z)$ of the nucleus is given by

1 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}-\mathrm{BEc}^{2}$
2 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}+\mathrm{BEc}^{2}$
3 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{m}_{\mathrm{p}}-\mathrm{BE} / \mathrm{c}^{2}$
4 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{p}+\mathrm{BE} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

147519 The binding energy of deuteron is $2.2 \mathrm{MeV}$ and that of ${ }_{2}^{4} \mathrm{He}$ is $28 \mathrm{MeV}$. If two deuterons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is

1 $25.8 \mathrm{MeV}$
2 $23.6 \mathrm{MeV}$
3 $19.2 \mathrm{MeV}$
4 $30.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147444 Given below are two statements : one is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion A : The binding energy per nucleon is practically independent of the atomic number for nuclei of mass number in the range 30 to 170 . Reason $\mathbf{R}$ : Nuclear force is short ranged. In the light of the above statements, choose the correct answer from the options given below

1 Both $\mathrm{A}$ and $\mathrm{R}$ are true but $\mathrm{R}$ is NOT the correct explanation of $\mathrm{A}$
2 A is true but $\mathrm{R}$ is false
3 A is false but $R$ is true
4 Both $\mathrm{A}$ and $\mathrm{R}$ are true and $\mathrm{R}$ is the correct explanation of $\mathrm{A}$
NUCLEAR PHYSICS

147501 The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium

1 can easily be broken up
2 is very stable
3 can be used as fissionable material
4 is radioactive
NUCLEAR PHYSICS

147497 What amount of energy is associated with mass of $2.5 \mathrm{~kg}$ ?

1 $6.27 \times 10^{17}$ joules
2 $4.27 \times 10^{17}$ joules
3 $0.27 \times 10^{17}$ joules
4 $2.25 \times 10^{17}$ joules
NUCLEAR PHYSICS

147517 $m_{p}$ denotes the mass of a proton and $m_{n}$ that of a neutron. A given nucleus of binding energy $B E$, contains $Z$ protons and $N$ neutrons. The mass $m(N, Z)$ of the nucleus is given by

1 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}-\mathrm{BEc}^{2}$
2 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}+\mathrm{BEc}^{2}$
3 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{m}_{\mathrm{p}}-\mathrm{BE} / \mathrm{c}^{2}$
4 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{p}+\mathrm{BE} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

147519 The binding energy of deuteron is $2.2 \mathrm{MeV}$ and that of ${ }_{2}^{4} \mathrm{He}$ is $28 \mathrm{MeV}$. If two deuterons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is

1 $25.8 \mathrm{MeV}$
2 $23.6 \mathrm{MeV}$
3 $19.2 \mathrm{MeV}$
4 $30.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147444 Given below are two statements : one is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion A : The binding energy per nucleon is practically independent of the atomic number for nuclei of mass number in the range 30 to 170 . Reason $\mathbf{R}$ : Nuclear force is short ranged. In the light of the above statements, choose the correct answer from the options given below

1 Both $\mathrm{A}$ and $\mathrm{R}$ are true but $\mathrm{R}$ is NOT the correct explanation of $\mathrm{A}$
2 A is true but $\mathrm{R}$ is false
3 A is false but $R$ is true
4 Both $\mathrm{A}$ and $\mathrm{R}$ are true and $\mathrm{R}$ is the correct explanation of $\mathrm{A}$
NUCLEAR PHYSICS

147501 The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium

1 can easily be broken up
2 is very stable
3 can be used as fissionable material
4 is radioactive
NUCLEAR PHYSICS

147497 What amount of energy is associated with mass of $2.5 \mathrm{~kg}$ ?

1 $6.27 \times 10^{17}$ joules
2 $4.27 \times 10^{17}$ joules
3 $0.27 \times 10^{17}$ joules
4 $2.25 \times 10^{17}$ joules
NUCLEAR PHYSICS

147517 $m_{p}$ denotes the mass of a proton and $m_{n}$ that of a neutron. A given nucleus of binding energy $B E$, contains $Z$ protons and $N$ neutrons. The mass $m(N, Z)$ of the nucleus is given by

1 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}-\mathrm{BEc}^{2}$
2 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}+\mathrm{BEc}^{2}$
3 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{m}_{\mathrm{p}}-\mathrm{BE} / \mathrm{c}^{2}$
4 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{p}+\mathrm{BE} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

147519 The binding energy of deuteron is $2.2 \mathrm{MeV}$ and that of ${ }_{2}^{4} \mathrm{He}$ is $28 \mathrm{MeV}$. If two deuterons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is

1 $25.8 \mathrm{MeV}$
2 $23.6 \mathrm{MeV}$
3 $19.2 \mathrm{MeV}$
4 $30.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147444 Given below are two statements : one is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion A : The binding energy per nucleon is practically independent of the atomic number for nuclei of mass number in the range 30 to 170 . Reason $\mathbf{R}$ : Nuclear force is short ranged. In the light of the above statements, choose the correct answer from the options given below

1 Both $\mathrm{A}$ and $\mathrm{R}$ are true but $\mathrm{R}$ is NOT the correct explanation of $\mathrm{A}$
2 A is true but $\mathrm{R}$ is false
3 A is false but $R$ is true
4 Both $\mathrm{A}$ and $\mathrm{R}$ are true and $\mathrm{R}$ is the correct explanation of $\mathrm{A}$
NUCLEAR PHYSICS

147501 The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium

1 can easily be broken up
2 is very stable
3 can be used as fissionable material
4 is radioactive
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147497 What amount of energy is associated with mass of $2.5 \mathrm{~kg}$ ?

1 $6.27 \times 10^{17}$ joules
2 $4.27 \times 10^{17}$ joules
3 $0.27 \times 10^{17}$ joules
4 $2.25 \times 10^{17}$ joules
NUCLEAR PHYSICS

147517 $m_{p}$ denotes the mass of a proton and $m_{n}$ that of a neutron. A given nucleus of binding energy $B E$, contains $Z$ protons and $N$ neutrons. The mass $m(N, Z)$ of the nucleus is given by

1 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}-\mathrm{BEc}^{2}$
2 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}+\mathrm{BEc}^{2}$
3 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{m}_{\mathrm{p}}-\mathrm{BE} / \mathrm{c}^{2}$
4 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{p}+\mathrm{BE} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

147519 The binding energy of deuteron is $2.2 \mathrm{MeV}$ and that of ${ }_{2}^{4} \mathrm{He}$ is $28 \mathrm{MeV}$. If two deuterons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is

1 $25.8 \mathrm{MeV}$
2 $23.6 \mathrm{MeV}$
3 $19.2 \mathrm{MeV}$
4 $30.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147444 Given below are two statements : one is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion A : The binding energy per nucleon is practically independent of the atomic number for nuclei of mass number in the range 30 to 170 . Reason $\mathbf{R}$ : Nuclear force is short ranged. In the light of the above statements, choose the correct answer from the options given below

1 Both $\mathrm{A}$ and $\mathrm{R}$ are true but $\mathrm{R}$ is NOT the correct explanation of $\mathrm{A}$
2 A is true but $\mathrm{R}$ is false
3 A is false but $R$ is true
4 Both $\mathrm{A}$ and $\mathrm{R}$ are true and $\mathrm{R}$ is the correct explanation of $\mathrm{A}$
NUCLEAR PHYSICS

147501 The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium

1 can easily be broken up
2 is very stable
3 can be used as fissionable material
4 is radioactive
NUCLEAR PHYSICS

147497 What amount of energy is associated with mass of $2.5 \mathrm{~kg}$ ?

1 $6.27 \times 10^{17}$ joules
2 $4.27 \times 10^{17}$ joules
3 $0.27 \times 10^{17}$ joules
4 $2.25 \times 10^{17}$ joules
NUCLEAR PHYSICS

147517 $m_{p}$ denotes the mass of a proton and $m_{n}$ that of a neutron. A given nucleus of binding energy $B E$, contains $Z$ protons and $N$ neutrons. The mass $m(N, Z)$ of the nucleus is given by

1 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}-\mathrm{BEc}^{2}$
2 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm}_{\mathrm{p}}+\mathrm{BEc}^{2}$
3 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{m}_{\mathrm{p}}-\mathrm{BE} / \mathrm{c}^{2}$
4 $\mathrm{m}(\mathrm{N}, \mathrm{Z})=\mathrm{Nm}_{\mathrm{n}}+\mathrm{Zm} \mathrm{p}+\mathrm{BE} / \mathrm{c}^{2}$
NUCLEAR PHYSICS

147519 The binding energy of deuteron is $2.2 \mathrm{MeV}$ and that of ${ }_{2}^{4} \mathrm{He}$ is $28 \mathrm{MeV}$. If two deuterons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is

1 $25.8 \mathrm{MeV}$
2 $23.6 \mathrm{MeV}$
3 $19.2 \mathrm{MeV}$
4 $30.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147444 Given below are two statements : one is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion A : The binding energy per nucleon is practically independent of the atomic number for nuclei of mass number in the range 30 to 170 . Reason $\mathbf{R}$ : Nuclear force is short ranged. In the light of the above statements, choose the correct answer from the options given below

1 Both $\mathrm{A}$ and $\mathrm{R}$ are true but $\mathrm{R}$ is NOT the correct explanation of $\mathrm{A}$
2 A is true but $\mathrm{R}$ is false
3 A is false but $R$ is true
4 Both $\mathrm{A}$ and $\mathrm{R}$ are true and $\mathrm{R}$ is the correct explanation of $\mathrm{A}$
NUCLEAR PHYSICS

147501 The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium

1 can easily be broken up
2 is very stable
3 can be used as fissionable material
4 is radioactive