Composition of Nucleus
NUCLEAR PHYSICS

147453 The Binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$, respectively.
In the nuclear reaction ${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$, the value of energy $Q$ released is:

1 $19.6 \mathrm{MeV}$
2 $-2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

147454 The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $1.15 \mathrm{M}$ e $\mathrm{V}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{He}\right)$ has binding energy of $7.1 \mathrm{MeV}$ per nucleon. Then is the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{H}+\mathrm{Q}$ the energy $Q$ is

1 $33.0 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $28.4 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $23.8 \mathrm{M} \mathrm{e} \mathrm{V}$
4 $4.6 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147455 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated in killowatt hour is (velocity of light $=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147456 If the binding energy per nucleon in ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$ respectively, then in the reaction $\mathbf{p}+{ }_{3}^{7} \mathrm{Li} \rightarrow 2{ }_{2}^{4} \mathrm{He}$ energy of proton must be

1 $28.24 \mathrm{MeV}$
2 $17.28 \mathrm{MeV}$
3 $1.46 \mathrm{MeV}$
4 $39.2 \mathrm{MeV}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147453 The Binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$, respectively.
In the nuclear reaction ${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$, the value of energy $Q$ released is:

1 $19.6 \mathrm{MeV}$
2 $-2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

147454 The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $1.15 \mathrm{M}$ e $\mathrm{V}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{He}\right)$ has binding energy of $7.1 \mathrm{MeV}$ per nucleon. Then is the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{H}+\mathrm{Q}$ the energy $Q$ is

1 $33.0 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $28.4 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $23.8 \mathrm{M} \mathrm{e} \mathrm{V}$
4 $4.6 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147455 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated in killowatt hour is (velocity of light $=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147456 If the binding energy per nucleon in ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$ respectively, then in the reaction $\mathbf{p}+{ }_{3}^{7} \mathrm{Li} \rightarrow 2{ }_{2}^{4} \mathrm{He}$ energy of proton must be

1 $28.24 \mathrm{MeV}$
2 $17.28 \mathrm{MeV}$
3 $1.46 \mathrm{MeV}$
4 $39.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147453 The Binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$, respectively.
In the nuclear reaction ${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$, the value of energy $Q$ released is:

1 $19.6 \mathrm{MeV}$
2 $-2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

147454 The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $1.15 \mathrm{M}$ e $\mathrm{V}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{He}\right)$ has binding energy of $7.1 \mathrm{MeV}$ per nucleon. Then is the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{H}+\mathrm{Q}$ the energy $Q$ is

1 $33.0 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $28.4 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $23.8 \mathrm{M} \mathrm{e} \mathrm{V}$
4 $4.6 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147455 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated in killowatt hour is (velocity of light $=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147456 If the binding energy per nucleon in ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$ respectively, then in the reaction $\mathbf{p}+{ }_{3}^{7} \mathrm{Li} \rightarrow 2{ }_{2}^{4} \mathrm{He}$ energy of proton must be

1 $28.24 \mathrm{MeV}$
2 $17.28 \mathrm{MeV}$
3 $1.46 \mathrm{MeV}$
4 $39.2 \mathrm{MeV}$
NUCLEAR PHYSICS

147453 The Binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$, respectively.
In the nuclear reaction ${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$, the value of energy $Q$ released is:

1 $19.6 \mathrm{MeV}$
2 $-2.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $17.3 \mathrm{MeV}$
NUCLEAR PHYSICS

147454 The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $1.15 \mathrm{M}$ e $\mathrm{V}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{He}\right)$ has binding energy of $7.1 \mathrm{MeV}$ per nucleon. Then is the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{H}+\mathrm{Q}$ the energy $Q$ is

1 $33.0 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $28.4 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $23.8 \mathrm{M} \mathrm{e} \mathrm{V}$
4 $4.6 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147455 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated in killowatt hour is (velocity of light $=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147456 If the binding energy per nucleon in ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are $5.60 \mathrm{MeV}$ and $7.06 \mathrm{MeV}$ respectively, then in the reaction $\mathbf{p}+{ }_{3}^{7} \mathrm{Li} \rightarrow 2{ }_{2}^{4} \mathrm{He}$ energy of proton must be

1 $28.24 \mathrm{MeV}$
2 $17.28 \mathrm{MeV}$
3 $1.46 \mathrm{MeV}$
4 $39.2 \mathrm{MeV}$