Composition of Nucleus
NUCLEAR PHYSICS

147469 A nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$ has mass represented by $\mathrm{m}(\mathrm{A}$, $Z$ ). If $m_{p}$ and $m_{n}$ denote the mass of proton and neutron respectively and $B E$ the binding energy (in $\mathrm{MeV}$ ) then,

1 $\mathrm{BE}=\left[\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}\right] \mathrm{c}^{2}$
2 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
3 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+\mathrm{Am}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
4 $\mathrm{BE}=\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}$
NUCLEAR PHYSICS

147473 A nucleus of mass $20 \mathrm{u}$ emits a $\gamma$-photon of energy $6 \mathrm{MeV}$. If the emission assume to occur when nucleus is free and rest, then the nucleus will have kinetic energy nearest to (Take, $1 u=$ $1.6 \times 10^{-27} \mathrm{~kg}$ )

1 $10 \mathrm{keV}$
2 $1 \mathrm{keV}$
3 $0.1 \mathrm{keV}$
4 $100 \mathrm{keV}$
NUCLEAR PHYSICS

147472 Assertion: The binding energy of per nucleon, for nuclei with atomic mass number A $>100$, decreases with A.
Reason: The nuclear forces are weak for heavier nuclei.

1 If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
2 If both Assertion and Reason are correct but Reason in not a correct explanation of the Assertion.
3 If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are incorrect.
4 (e.) If the Assertion is incorrect but the Reason is correct.
NUCLEAR PHYSICS

147475 If $M_{\mathbf{o}}$ is the mass of an oxygen isotope ${ }_{8} \mathrm{O}^{17}, \mathrm{M}_{\mathrm{p}}$ and $M_{n}$ are the masses of a proton and a neutron, respectively, the nuclear binding energy of the isotope is

1 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{c}^{2}$
2 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
3 $M_{0} c^{2}$
4 $\left(\mathrm{M}_{\mathrm{o}}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
NUCLEAR PHYSICS

147469 A nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$ has mass represented by $\mathrm{m}(\mathrm{A}$, $Z$ ). If $m_{p}$ and $m_{n}$ denote the mass of proton and neutron respectively and $B E$ the binding energy (in $\mathrm{MeV}$ ) then,

1 $\mathrm{BE}=\left[\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}\right] \mathrm{c}^{2}$
2 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
3 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+\mathrm{Am}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
4 $\mathrm{BE}=\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}$
NUCLEAR PHYSICS

147473 A nucleus of mass $20 \mathrm{u}$ emits a $\gamma$-photon of energy $6 \mathrm{MeV}$. If the emission assume to occur when nucleus is free and rest, then the nucleus will have kinetic energy nearest to (Take, $1 u=$ $1.6 \times 10^{-27} \mathrm{~kg}$ )

1 $10 \mathrm{keV}$
2 $1 \mathrm{keV}$
3 $0.1 \mathrm{keV}$
4 $100 \mathrm{keV}$
NUCLEAR PHYSICS

147472 Assertion: The binding energy of per nucleon, for nuclei with atomic mass number A $>100$, decreases with A.
Reason: The nuclear forces are weak for heavier nuclei.

1 If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
2 If both Assertion and Reason are correct but Reason in not a correct explanation of the Assertion.
3 If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are incorrect.
4 (e.) If the Assertion is incorrect but the Reason is correct.
NUCLEAR PHYSICS

147475 If $M_{\mathbf{o}}$ is the mass of an oxygen isotope ${ }_{8} \mathrm{O}^{17}, \mathrm{M}_{\mathrm{p}}$ and $M_{n}$ are the masses of a proton and a neutron, respectively, the nuclear binding energy of the isotope is

1 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{c}^{2}$
2 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
3 $M_{0} c^{2}$
4 $\left(\mathrm{M}_{\mathrm{o}}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
NUCLEAR PHYSICS

147469 A nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$ has mass represented by $\mathrm{m}(\mathrm{A}$, $Z$ ). If $m_{p}$ and $m_{n}$ denote the mass of proton and neutron respectively and $B E$ the binding energy (in $\mathrm{MeV}$ ) then,

1 $\mathrm{BE}=\left[\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}\right] \mathrm{c}^{2}$
2 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
3 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+\mathrm{Am}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
4 $\mathrm{BE}=\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}$
NUCLEAR PHYSICS

147473 A nucleus of mass $20 \mathrm{u}$ emits a $\gamma$-photon of energy $6 \mathrm{MeV}$. If the emission assume to occur when nucleus is free and rest, then the nucleus will have kinetic energy nearest to (Take, $1 u=$ $1.6 \times 10^{-27} \mathrm{~kg}$ )

1 $10 \mathrm{keV}$
2 $1 \mathrm{keV}$
3 $0.1 \mathrm{keV}$
4 $100 \mathrm{keV}$
NUCLEAR PHYSICS

147472 Assertion: The binding energy of per nucleon, for nuclei with atomic mass number A $>100$, decreases with A.
Reason: The nuclear forces are weak for heavier nuclei.

1 If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
2 If both Assertion and Reason are correct but Reason in not a correct explanation of the Assertion.
3 If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are incorrect.
4 (e.) If the Assertion is incorrect but the Reason is correct.
NUCLEAR PHYSICS

147475 If $M_{\mathbf{o}}$ is the mass of an oxygen isotope ${ }_{8} \mathrm{O}^{17}, \mathrm{M}_{\mathrm{p}}$ and $M_{n}$ are the masses of a proton and a neutron, respectively, the nuclear binding energy of the isotope is

1 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{c}^{2}$
2 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
3 $M_{0} c^{2}$
4 $\left(\mathrm{M}_{\mathrm{o}}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147469 A nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$ has mass represented by $\mathrm{m}(\mathrm{A}$, $Z$ ). If $m_{p}$ and $m_{n}$ denote the mass of proton and neutron respectively and $B E$ the binding energy (in $\mathrm{MeV}$ ) then,

1 $\mathrm{BE}=\left[\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}\right] \mathrm{c}^{2}$
2 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
3 $\mathrm{BE}=\left[\mathrm{Zm}_{\mathrm{p}}+\mathrm{Am}_{\mathrm{n}}-\mathrm{m}(\mathrm{A}, \mathrm{Z})\right] \mathrm{c}^{2}$
4 $\mathrm{BE}=\mathrm{m}(\mathrm{A}, \mathrm{Z})-\mathrm{Zm}_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}$
NUCLEAR PHYSICS

147473 A nucleus of mass $20 \mathrm{u}$ emits a $\gamma$-photon of energy $6 \mathrm{MeV}$. If the emission assume to occur when nucleus is free and rest, then the nucleus will have kinetic energy nearest to (Take, $1 u=$ $1.6 \times 10^{-27} \mathrm{~kg}$ )

1 $10 \mathrm{keV}$
2 $1 \mathrm{keV}$
3 $0.1 \mathrm{keV}$
4 $100 \mathrm{keV}$
NUCLEAR PHYSICS

147472 Assertion: The binding energy of per nucleon, for nuclei with atomic mass number A $>100$, decreases with A.
Reason: The nuclear forces are weak for heavier nuclei.

1 If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
2 If both Assertion and Reason are correct but Reason in not a correct explanation of the Assertion.
3 If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are incorrect.
4 (e.) If the Assertion is incorrect but the Reason is correct.
NUCLEAR PHYSICS

147475 If $M_{\mathbf{o}}$ is the mass of an oxygen isotope ${ }_{8} \mathrm{O}^{17}, \mathrm{M}_{\mathrm{p}}$ and $M_{n}$ are the masses of a proton and a neutron, respectively, the nuclear binding energy of the isotope is

1 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{c}^{2}$
2 $\left(\mathrm{M}_{\mathrm{o}}-8 \mathrm{M}_{\mathrm{p}}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$
3 $M_{0} c^{2}$
4 $\left(\mathrm{M}_{\mathrm{o}}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{c}^{2}$