Composition of Nucleus
NUCLEAR PHYSICS

147463 For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 $\mathrm{MeV}$ and $8.6 \mathrm{MeV}$, respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?

1 $214 \mathrm{MeV}$
2 $119 \mathrm{MeV}$
3 $2047 \mathrm{MeV}$
4 $1142 \mathrm{MeV}$
NUCLEAR PHYSICS

147464 Find $\mathrm{BE}$ per nucleon of ${ }^{56} \mathrm{Fe}$ where $\mathrm{m}\left({ }^{56} \mathrm{Fe}\right)=$ $55.936 u, m_{n}=1.008664 u, m_{p}=1.007276 u$

1 $477.45 \mathrm{MeV}$
2 $8.52 \mathrm{MeV}$
3 $577 \mathrm{MeV}$
4 $10.52 \mathrm{MeV}$
NUCLEAR PHYSICS

147465 If the binding energy of $\mathrm{N}^{14}$ is $7.5 \mathrm{MeV}$ per nucleons and that of $N^{15}$ is $7.7 \mathrm{MeV}$ per nucleon, then the energy is required to remove a neutron from $\mathrm{N}^{15}$ is

1 $5.25 \mathrm{MeV}$
2 $0.2 \mathrm{MeV}$
3 $10.5 \mathrm{MeV}$
4 $0.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147466 The mass density of a nucleus varies with mass number $A$ as

1 $\mathrm{A}^{2}$
2 $\mathrm{A}^{1}$
3 $\mathrm{A}^{0}$
4 $\mathrm{A}^{-1}$
NUCLEAR PHYSICS

147468 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass numbers 80 and 120 . If binding energy per nucleon for parent atom is $6.5 \mathrm{MeV}$ and for daughter nuclii is $7 \mathrm{MeV}$ and $8 \mathrm{MeV}$ respectively, then the energy released in the decay will be

1 $200 \mathrm{MeV}$
2 $120 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $180 \mathrm{Mev}$
NUCLEAR PHYSICS

147463 For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 $\mathrm{MeV}$ and $8.6 \mathrm{MeV}$, respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?

1 $214 \mathrm{MeV}$
2 $119 \mathrm{MeV}$
3 $2047 \mathrm{MeV}$
4 $1142 \mathrm{MeV}$
NUCLEAR PHYSICS

147464 Find $\mathrm{BE}$ per nucleon of ${ }^{56} \mathrm{Fe}$ where $\mathrm{m}\left({ }^{56} \mathrm{Fe}\right)=$ $55.936 u, m_{n}=1.008664 u, m_{p}=1.007276 u$

1 $477.45 \mathrm{MeV}$
2 $8.52 \mathrm{MeV}$
3 $577 \mathrm{MeV}$
4 $10.52 \mathrm{MeV}$
NUCLEAR PHYSICS

147465 If the binding energy of $\mathrm{N}^{14}$ is $7.5 \mathrm{MeV}$ per nucleons and that of $N^{15}$ is $7.7 \mathrm{MeV}$ per nucleon, then the energy is required to remove a neutron from $\mathrm{N}^{15}$ is

1 $5.25 \mathrm{MeV}$
2 $0.2 \mathrm{MeV}$
3 $10.5 \mathrm{MeV}$
4 $0.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147466 The mass density of a nucleus varies with mass number $A$ as

1 $\mathrm{A}^{2}$
2 $\mathrm{A}^{1}$
3 $\mathrm{A}^{0}$
4 $\mathrm{A}^{-1}$
NUCLEAR PHYSICS

147468 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass numbers 80 and 120 . If binding energy per nucleon for parent atom is $6.5 \mathrm{MeV}$ and for daughter nuclii is $7 \mathrm{MeV}$ and $8 \mathrm{MeV}$ respectively, then the energy released in the decay will be

1 $200 \mathrm{MeV}$
2 $120 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $180 \mathrm{Mev}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147463 For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 $\mathrm{MeV}$ and $8.6 \mathrm{MeV}$, respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?

1 $214 \mathrm{MeV}$
2 $119 \mathrm{MeV}$
3 $2047 \mathrm{MeV}$
4 $1142 \mathrm{MeV}$
NUCLEAR PHYSICS

147464 Find $\mathrm{BE}$ per nucleon of ${ }^{56} \mathrm{Fe}$ where $\mathrm{m}\left({ }^{56} \mathrm{Fe}\right)=$ $55.936 u, m_{n}=1.008664 u, m_{p}=1.007276 u$

1 $477.45 \mathrm{MeV}$
2 $8.52 \mathrm{MeV}$
3 $577 \mathrm{MeV}$
4 $10.52 \mathrm{MeV}$
NUCLEAR PHYSICS

147465 If the binding energy of $\mathrm{N}^{14}$ is $7.5 \mathrm{MeV}$ per nucleons and that of $N^{15}$ is $7.7 \mathrm{MeV}$ per nucleon, then the energy is required to remove a neutron from $\mathrm{N}^{15}$ is

1 $5.25 \mathrm{MeV}$
2 $0.2 \mathrm{MeV}$
3 $10.5 \mathrm{MeV}$
4 $0.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147466 The mass density of a nucleus varies with mass number $A$ as

1 $\mathrm{A}^{2}$
2 $\mathrm{A}^{1}$
3 $\mathrm{A}^{0}$
4 $\mathrm{A}^{-1}$
NUCLEAR PHYSICS

147468 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass numbers 80 and 120 . If binding energy per nucleon for parent atom is $6.5 \mathrm{MeV}$ and for daughter nuclii is $7 \mathrm{MeV}$ and $8 \mathrm{MeV}$ respectively, then the energy released in the decay will be

1 $200 \mathrm{MeV}$
2 $120 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $180 \mathrm{Mev}$
NUCLEAR PHYSICS

147463 For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 $\mathrm{MeV}$ and $8.6 \mathrm{MeV}$, respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?

1 $214 \mathrm{MeV}$
2 $119 \mathrm{MeV}$
3 $2047 \mathrm{MeV}$
4 $1142 \mathrm{MeV}$
NUCLEAR PHYSICS

147464 Find $\mathrm{BE}$ per nucleon of ${ }^{56} \mathrm{Fe}$ where $\mathrm{m}\left({ }^{56} \mathrm{Fe}\right)=$ $55.936 u, m_{n}=1.008664 u, m_{p}=1.007276 u$

1 $477.45 \mathrm{MeV}$
2 $8.52 \mathrm{MeV}$
3 $577 \mathrm{MeV}$
4 $10.52 \mathrm{MeV}$
NUCLEAR PHYSICS

147465 If the binding energy of $\mathrm{N}^{14}$ is $7.5 \mathrm{MeV}$ per nucleons and that of $N^{15}$ is $7.7 \mathrm{MeV}$ per nucleon, then the energy is required to remove a neutron from $\mathrm{N}^{15}$ is

1 $5.25 \mathrm{MeV}$
2 $0.2 \mathrm{MeV}$
3 $10.5 \mathrm{MeV}$
4 $0.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147466 The mass density of a nucleus varies with mass number $A$ as

1 $\mathrm{A}^{2}$
2 $\mathrm{A}^{1}$
3 $\mathrm{A}^{0}$
4 $\mathrm{A}^{-1}$
NUCLEAR PHYSICS

147468 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass numbers 80 and 120 . If binding energy per nucleon for parent atom is $6.5 \mathrm{MeV}$ and for daughter nuclii is $7 \mathrm{MeV}$ and $8 \mathrm{MeV}$ respectively, then the energy released in the decay will be

1 $200 \mathrm{MeV}$
2 $120 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $180 \mathrm{Mev}$
NUCLEAR PHYSICS

147463 For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 $\mathrm{MeV}$ and $8.6 \mathrm{MeV}$, respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?

1 $214 \mathrm{MeV}$
2 $119 \mathrm{MeV}$
3 $2047 \mathrm{MeV}$
4 $1142 \mathrm{MeV}$
NUCLEAR PHYSICS

147464 Find $\mathrm{BE}$ per nucleon of ${ }^{56} \mathrm{Fe}$ where $\mathrm{m}\left({ }^{56} \mathrm{Fe}\right)=$ $55.936 u, m_{n}=1.008664 u, m_{p}=1.007276 u$

1 $477.45 \mathrm{MeV}$
2 $8.52 \mathrm{MeV}$
3 $577 \mathrm{MeV}$
4 $10.52 \mathrm{MeV}$
NUCLEAR PHYSICS

147465 If the binding energy of $\mathrm{N}^{14}$ is $7.5 \mathrm{MeV}$ per nucleons and that of $N^{15}$ is $7.7 \mathrm{MeV}$ per nucleon, then the energy is required to remove a neutron from $\mathrm{N}^{15}$ is

1 $5.25 \mathrm{MeV}$
2 $0.2 \mathrm{MeV}$
3 $10.5 \mathrm{MeV}$
4 $0.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147466 The mass density of a nucleus varies with mass number $A$ as

1 $\mathrm{A}^{2}$
2 $\mathrm{A}^{1}$
3 $\mathrm{A}^{0}$
4 $\mathrm{A}^{-1}$
NUCLEAR PHYSICS

147468 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass numbers 80 and 120 . If binding energy per nucleon for parent atom is $6.5 \mathrm{MeV}$ and for daughter nuclii is $7 \mathrm{MeV}$ and $8 \mathrm{MeV}$ respectively, then the energy released in the decay will be

1 $200 \mathrm{MeV}$
2 $120 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $180 \mathrm{Mev}$