Nucleus (Atomic Number (Z), Atomic Mass (A), Isotopes, Isobars, Isostones)
NUCLEAR PHYSICS

147394 The number of neutrons in ${ }_{92} \mathrm{U}^{235}$ nucleus is

1 327
2 235
3 143
4 92
NUCLEAR PHYSICS

147396 In ${ }_{88} \mathbf{R a}^{226}$ nucleus there are :

1 226 protons and 88 electrons
2 138 protons and 88 neutrons
3 226 neutrons and 138 electrons
4 138 neutrons and 88 protons
NUCLEAR PHYSICS

147397 What is the ratio of the radii of the nuclei of ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{52} \mathrm{Te}^{125}$ ?

1 $3: 5$
2 $1: 4$
3 $27: 125$
4 $5: 3$
NUCLEAR PHYSICS

147395 Find the energy equivalent of one atomic mass unit in joules and in $\mathrm{M} \mathrm{e} \mathrm{V}$.
#[Qdiff: Hard, QCat: Numerical Based, examname: AIIMS-2001]
, $1 \mathrm{ AMU}=1.6605 \times 10^{-27} \mathrm{~kg}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
, $\mathrm{E}=\mathrm{mc}^{2}$
, $\mathrm{E}=1.6605 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=1.5 \times 10^{-10} \mathrm{~J}$
, Energy in $\mathrm{MeV}$
, $\mathrm{E}=\frac{1.5 \times 10^{-10} \mathrm{~J}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E}=0.9315 \times 10^{9} \mathrm{eV}$
, $\mathrm{E}=931.5 \times 10^{6} \mathrm{eV}$
, $\mathrm{E}=931.5 \mathrm{MeV}$
, 57. Which one of the following has the highest neutrons ratio?
, (a) ${ }_{92} \mathrm{U}^{235}$
, (c) ${ }_{2} \mathrm{He}^{4}$
, (b) ${ }_{8} \mathrm{O}^{16}$
, (d) ${ }_{26} \mathrm{Fe}^{56}$
]#

1 $1.66 \times 10^{-10} \mathrm{~J}, 93.15 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $2.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $1.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{Me} \mathrm{V}$
4 $3 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147402 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would have been :

1 32
2 60
3 64
4 4
NUCLEAR PHYSICS

147394 The number of neutrons in ${ }_{92} \mathrm{U}^{235}$ nucleus is

1 327
2 235
3 143
4 92
NUCLEAR PHYSICS

147396 In ${ }_{88} \mathbf{R a}^{226}$ nucleus there are :

1 226 protons and 88 electrons
2 138 protons and 88 neutrons
3 226 neutrons and 138 electrons
4 138 neutrons and 88 protons
NUCLEAR PHYSICS

147397 What is the ratio of the radii of the nuclei of ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{52} \mathrm{Te}^{125}$ ?

1 $3: 5$
2 $1: 4$
3 $27: 125$
4 $5: 3$
NUCLEAR PHYSICS

147395 Find the energy equivalent of one atomic mass unit in joules and in $\mathrm{M} \mathrm{e} \mathrm{V}$.
#[Qdiff: Hard, QCat: Numerical Based, examname: AIIMS-2001]
, $1 \mathrm{ AMU}=1.6605 \times 10^{-27} \mathrm{~kg}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
, $\mathrm{E}=\mathrm{mc}^{2}$
, $\mathrm{E}=1.6605 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=1.5 \times 10^{-10} \mathrm{~J}$
, Energy in $\mathrm{MeV}$
, $\mathrm{E}=\frac{1.5 \times 10^{-10} \mathrm{~J}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E}=0.9315 \times 10^{9} \mathrm{eV}$
, $\mathrm{E}=931.5 \times 10^{6} \mathrm{eV}$
, $\mathrm{E}=931.5 \mathrm{MeV}$
, 57. Which one of the following has the highest neutrons ratio?
, (a) ${ }_{92} \mathrm{U}^{235}$
, (c) ${ }_{2} \mathrm{He}^{4}$
, (b) ${ }_{8} \mathrm{O}^{16}$
, (d) ${ }_{26} \mathrm{Fe}^{56}$
]#

1 $1.66 \times 10^{-10} \mathrm{~J}, 93.15 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $2.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $1.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{Me} \mathrm{V}$
4 $3 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147402 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would have been :

1 32
2 60
3 64
4 4
NUCLEAR PHYSICS

147394 The number of neutrons in ${ }_{92} \mathrm{U}^{235}$ nucleus is

1 327
2 235
3 143
4 92
NUCLEAR PHYSICS

147396 In ${ }_{88} \mathbf{R a}^{226}$ nucleus there are :

1 226 protons and 88 electrons
2 138 protons and 88 neutrons
3 226 neutrons and 138 electrons
4 138 neutrons and 88 protons
NUCLEAR PHYSICS

147397 What is the ratio of the radii of the nuclei of ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{52} \mathrm{Te}^{125}$ ?

1 $3: 5$
2 $1: 4$
3 $27: 125$
4 $5: 3$
NUCLEAR PHYSICS

147395 Find the energy equivalent of one atomic mass unit in joules and in $\mathrm{M} \mathrm{e} \mathrm{V}$.
#[Qdiff: Hard, QCat: Numerical Based, examname: AIIMS-2001]
, $1 \mathrm{ AMU}=1.6605 \times 10^{-27} \mathrm{~kg}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
, $\mathrm{E}=\mathrm{mc}^{2}$
, $\mathrm{E}=1.6605 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=1.5 \times 10^{-10} \mathrm{~J}$
, Energy in $\mathrm{MeV}$
, $\mathrm{E}=\frac{1.5 \times 10^{-10} \mathrm{~J}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E}=0.9315 \times 10^{9} \mathrm{eV}$
, $\mathrm{E}=931.5 \times 10^{6} \mathrm{eV}$
, $\mathrm{E}=931.5 \mathrm{MeV}$
, 57. Which one of the following has the highest neutrons ratio?
, (a) ${ }_{92} \mathrm{U}^{235}$
, (c) ${ }_{2} \mathrm{He}^{4}$
, (b) ${ }_{8} \mathrm{O}^{16}$
, (d) ${ }_{26} \mathrm{Fe}^{56}$
]#

1 $1.66 \times 10^{-10} \mathrm{~J}, 93.15 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $2.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $1.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{Me} \mathrm{V}$
4 $3 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147402 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would have been :

1 32
2 60
3 64
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147394 The number of neutrons in ${ }_{92} \mathrm{U}^{235}$ nucleus is

1 327
2 235
3 143
4 92
NUCLEAR PHYSICS

147396 In ${ }_{88} \mathbf{R a}^{226}$ nucleus there are :

1 226 protons and 88 electrons
2 138 protons and 88 neutrons
3 226 neutrons and 138 electrons
4 138 neutrons and 88 protons
NUCLEAR PHYSICS

147397 What is the ratio of the radii of the nuclei of ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{52} \mathrm{Te}^{125}$ ?

1 $3: 5$
2 $1: 4$
3 $27: 125$
4 $5: 3$
NUCLEAR PHYSICS

147395 Find the energy equivalent of one atomic mass unit in joules and in $\mathrm{M} \mathrm{e} \mathrm{V}$.
#[Qdiff: Hard, QCat: Numerical Based, examname: AIIMS-2001]
, $1 \mathrm{ AMU}=1.6605 \times 10^{-27} \mathrm{~kg}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
, $\mathrm{E}=\mathrm{mc}^{2}$
, $\mathrm{E}=1.6605 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=1.5 \times 10^{-10} \mathrm{~J}$
, Energy in $\mathrm{MeV}$
, $\mathrm{E}=\frac{1.5 \times 10^{-10} \mathrm{~J}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E}=0.9315 \times 10^{9} \mathrm{eV}$
, $\mathrm{E}=931.5 \times 10^{6} \mathrm{eV}$
, $\mathrm{E}=931.5 \mathrm{MeV}$
, 57. Which one of the following has the highest neutrons ratio?
, (a) ${ }_{92} \mathrm{U}^{235}$
, (c) ${ }_{2} \mathrm{He}^{4}$
, (b) ${ }_{8} \mathrm{O}^{16}$
, (d) ${ }_{26} \mathrm{Fe}^{56}$
]#

1 $1.66 \times 10^{-10} \mathrm{~J}, 93.15 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $2.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $1.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{Me} \mathrm{V}$
4 $3 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147402 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would have been :

1 32
2 60
3 64
4 4
NUCLEAR PHYSICS

147394 The number of neutrons in ${ }_{92} \mathrm{U}^{235}$ nucleus is

1 327
2 235
3 143
4 92
NUCLEAR PHYSICS

147396 In ${ }_{88} \mathbf{R a}^{226}$ nucleus there are :

1 226 protons and 88 electrons
2 138 protons and 88 neutrons
3 226 neutrons and 138 electrons
4 138 neutrons and 88 protons
NUCLEAR PHYSICS

147397 What is the ratio of the radii of the nuclei of ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{52} \mathrm{Te}^{125}$ ?

1 $3: 5$
2 $1: 4$
3 $27: 125$
4 $5: 3$
NUCLEAR PHYSICS

147395 Find the energy equivalent of one atomic mass unit in joules and in $\mathrm{M} \mathrm{e} \mathrm{V}$.
#[Qdiff: Hard, QCat: Numerical Based, examname: AIIMS-2001]
, $1 \mathrm{ AMU}=1.6605 \times 10^{-27} \mathrm{~kg}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
, $\mathrm{E}=\mathrm{mc}^{2}$
, $\mathrm{E}=1.6605 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=1.5 \times 10^{-10} \mathrm{~J}$
, Energy in $\mathrm{MeV}$
, $\mathrm{E}=\frac{1.5 \times 10^{-10} \mathrm{~J}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E}=0.9315 \times 10^{9} \mathrm{eV}$
, $\mathrm{E}=931.5 \times 10^{6} \mathrm{eV}$
, $\mathrm{E}=931.5 \mathrm{MeV}$
, 57. Which one of the following has the highest neutrons ratio?
, (a) ${ }_{92} \mathrm{U}^{235}$
, (c) ${ }_{2} \mathrm{He}^{4}$
, (b) ${ }_{8} \mathrm{O}^{16}$
, (d) ${ }_{26} \mathrm{Fe}^{56}$
]#

1 $1.66 \times 10^{-10} \mathrm{~J}, 93.15 \mathrm{M} \mathrm{e} \mathrm{V}$
2 $2.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
3 $1.5 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{Me} \mathrm{V}$
4 $3 \times 10^{-10} \mathrm{~J}, 931.5 \mathrm{M} \mathrm{e} \mathrm{V}$
NUCLEAR PHYSICS

147402 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would have been :

1 32
2 60
3 64
4 4