Nucleus (Atomic Number (Z), Atomic Mass (A), Isotopes, Isobars, Isostones)
NUCLEAR PHYSICS

147386 A particle having almost zero mass and exactly zero charge is
#[Qdiff: N/A, QCat: N/A, examname: 46. When $0.50 \AA \mathrm{X}$-rays strike a material, $=0.01302 \mathrm{AMU}$
, $=0.01302 \times 931 \mathrm{MeV}$
, $=12.13 \mathrm{MeV}$
]#

1 positron
2 electron
3 neutron
4 neutrino
NUCLEAR PHYSICS

147388 The natural boron of atomic weight 10.81 is found to have two isotopes $B^{10}$ and $B^{11}$. The ratio of abundance of isotopes in natural boron should be

1 $11: 10$
2 $81: 19$
3 $10: 11$
4 $15: 16$
5 $19: 81$
NUCLEAR PHYSICS

147390 The binding energy per nucleon of ${ }_{8} \mathrm{O}^{16}$ is 7.97 $\mathrm{MeV}$ and that ${ }_{8} \mathrm{O}^{\mathrm{I7}}$ of is $7.75 \mathrm{MeV}$. The energy required to remove one neutron from ${ }_{8} \mathrm{O}^{17}$ is $\mathrm{MeV}$.

1 3.52
2 3.62
3 4.23
4 7.86
NUCLEAR PHYSICS

147392 Nuclear radius of ${ }^{27} \mathrm{Al}$ is $3 / 5$ times that of ${ }^{\mathrm{A}} \mathrm{X}$. Value of the mass number $A$ is

1 54
2 81
3 125
4 186
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147386 A particle having almost zero mass and exactly zero charge is
#[Qdiff: N/A, QCat: N/A, examname: 46. When $0.50 \AA \mathrm{X}$-rays strike a material, $=0.01302 \mathrm{AMU}$
, $=0.01302 \times 931 \mathrm{MeV}$
, $=12.13 \mathrm{MeV}$
]#

1 positron
2 electron
3 neutron
4 neutrino
NUCLEAR PHYSICS

147388 The natural boron of atomic weight 10.81 is found to have two isotopes $B^{10}$ and $B^{11}$. The ratio of abundance of isotopes in natural boron should be

1 $11: 10$
2 $81: 19$
3 $10: 11$
4 $15: 16$
5 $19: 81$
NUCLEAR PHYSICS

147390 The binding energy per nucleon of ${ }_{8} \mathrm{O}^{16}$ is 7.97 $\mathrm{MeV}$ and that ${ }_{8} \mathrm{O}^{\mathrm{I7}}$ of is $7.75 \mathrm{MeV}$. The energy required to remove one neutron from ${ }_{8} \mathrm{O}^{17}$ is $\mathrm{MeV}$.

1 3.52
2 3.62
3 4.23
4 7.86
NUCLEAR PHYSICS

147392 Nuclear radius of ${ }^{27} \mathrm{Al}$ is $3 / 5$ times that of ${ }^{\mathrm{A}} \mathrm{X}$. Value of the mass number $A$ is

1 54
2 81
3 125
4 186
NUCLEAR PHYSICS

147386 A particle having almost zero mass and exactly zero charge is
#[Qdiff: N/A, QCat: N/A, examname: 46. When $0.50 \AA \mathrm{X}$-rays strike a material, $=0.01302 \mathrm{AMU}$
, $=0.01302 \times 931 \mathrm{MeV}$
, $=12.13 \mathrm{MeV}$
]#

1 positron
2 electron
3 neutron
4 neutrino
NUCLEAR PHYSICS

147388 The natural boron of atomic weight 10.81 is found to have two isotopes $B^{10}$ and $B^{11}$. The ratio of abundance of isotopes in natural boron should be

1 $11: 10$
2 $81: 19$
3 $10: 11$
4 $15: 16$
5 $19: 81$
NUCLEAR PHYSICS

147390 The binding energy per nucleon of ${ }_{8} \mathrm{O}^{16}$ is 7.97 $\mathrm{MeV}$ and that ${ }_{8} \mathrm{O}^{\mathrm{I7}}$ of is $7.75 \mathrm{MeV}$. The energy required to remove one neutron from ${ }_{8} \mathrm{O}^{17}$ is $\mathrm{MeV}$.

1 3.52
2 3.62
3 4.23
4 7.86
NUCLEAR PHYSICS

147392 Nuclear radius of ${ }^{27} \mathrm{Al}$ is $3 / 5$ times that of ${ }^{\mathrm{A}} \mathrm{X}$. Value of the mass number $A$ is

1 54
2 81
3 125
4 186
NUCLEAR PHYSICS

147386 A particle having almost zero mass and exactly zero charge is
#[Qdiff: N/A, QCat: N/A, examname: 46. When $0.50 \AA \mathrm{X}$-rays strike a material, $=0.01302 \mathrm{AMU}$
, $=0.01302 \times 931 \mathrm{MeV}$
, $=12.13 \mathrm{MeV}$
]#

1 positron
2 electron
3 neutron
4 neutrino
NUCLEAR PHYSICS

147388 The natural boron of atomic weight 10.81 is found to have two isotopes $B^{10}$ and $B^{11}$. The ratio of abundance of isotopes in natural boron should be

1 $11: 10$
2 $81: 19$
3 $10: 11$
4 $15: 16$
5 $19: 81$
NUCLEAR PHYSICS

147390 The binding energy per nucleon of ${ }_{8} \mathrm{O}^{16}$ is 7.97 $\mathrm{MeV}$ and that ${ }_{8} \mathrm{O}^{\mathrm{I7}}$ of is $7.75 \mathrm{MeV}$. The energy required to remove one neutron from ${ }_{8} \mathrm{O}^{17}$ is $\mathrm{MeV}$.

1 3.52
2 3.62
3 4.23
4 7.86
NUCLEAR PHYSICS

147392 Nuclear radius of ${ }^{27} \mathrm{Al}$ is $3 / 5$ times that of ${ }^{\mathrm{A}} \mathrm{X}$. Value of the mass number $A$ is

1 54
2 81
3 125
4 186