147363
In stable nuclei the number of Protons $(\mathrm{Z})$ and number of Neutrons $(N)$ are related as
1 $\mathrm{N} \leq \mathrm{Z}$
2 $\mathrm{N} \lt \mathrm{Z}$
3 $\mathrm{N}=\mathrm{Z}$
4 $\mathrm{N}=\mathrm{Z}=0$
Explanation:
C For stable nuclei the number of Protons (Z) and number of Neutrons $(\mathrm{N})$ are equal $\mathrm{Z}=\mathrm{N}$
AP EAMCET-25.09.2020
NUCLEAR PHYSICS
147365
${ }_{90}^{232}$ Th emits $6 \alpha$ and $4 \beta$ - particles and gets converted into a lead. The mass number and atomic number of lead is
1 208,82
2 82,208
3 210,82
4 210,84
Explanation:
A ${ }_{90} \operatorname{Th}^{232} \stackrel{6 \alpha}{\longrightarrow} 78 \mathrm{X}^{208} \stackrel{4 \beta}{\longrightarrow}{ }_{82} \mathrm{~Pb}^{208}$ $\mathrm{So}$, the mass number and atomic number of $\mathrm{Pb}$ is 208 and 82 .
AP EAMCET (23.09.2020) Shift-I
NUCLEAR PHYSICS
147372
The binding energy per nucleon is maximum in the case of
1 ${ }_{2}^{4} \mathrm{He}$
2 ${ }_{26} \mathrm{Fe}^{56}$
3 ${ }_{56} \mathrm{Ba}^{141}$
4 ${ }_{92} \mathrm{U}^{225}$
Explanation:
B The figure is a plot of the binding energy per nucleon $\left(\mathrm{E}_{\mathrm{bn}}\right)$ versus the mass number $(\mathrm{A})$. We notice that binding energy per nucleon of atomic number 56 $\left({ }_{26} \mathrm{Fe}^{56}\right)$ has maximum value.
Manipal UGET-2018
NUCLEAR PHYSICS
147374
Density of nuclear matter is nearly
1 $10^{26} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{24} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Explanation:
C The density of nuclear matter is $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
AMU-2017
NUCLEAR PHYSICS
147377
Which of the following particle when bombards on ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$ ?
1 Proton
2 Neutron
3 Electron
4 Alpha particle
5 Deutron
Explanation:
B When ${ }^{65} \mathrm{Cu}$ is bombard with a neutron ${ }^{65} \mathrm{Cu}+{ }_{0} \mathrm{n}^{1} \rightarrow{ }^{66} \mathrm{Cu}$
147363
In stable nuclei the number of Protons $(\mathrm{Z})$ and number of Neutrons $(N)$ are related as
1 $\mathrm{N} \leq \mathrm{Z}$
2 $\mathrm{N} \lt \mathrm{Z}$
3 $\mathrm{N}=\mathrm{Z}$
4 $\mathrm{N}=\mathrm{Z}=0$
Explanation:
C For stable nuclei the number of Protons (Z) and number of Neutrons $(\mathrm{N})$ are equal $\mathrm{Z}=\mathrm{N}$
AP EAMCET-25.09.2020
NUCLEAR PHYSICS
147365
${ }_{90}^{232}$ Th emits $6 \alpha$ and $4 \beta$ - particles and gets converted into a lead. The mass number and atomic number of lead is
1 208,82
2 82,208
3 210,82
4 210,84
Explanation:
A ${ }_{90} \operatorname{Th}^{232} \stackrel{6 \alpha}{\longrightarrow} 78 \mathrm{X}^{208} \stackrel{4 \beta}{\longrightarrow}{ }_{82} \mathrm{~Pb}^{208}$ $\mathrm{So}$, the mass number and atomic number of $\mathrm{Pb}$ is 208 and 82 .
AP EAMCET (23.09.2020) Shift-I
NUCLEAR PHYSICS
147372
The binding energy per nucleon is maximum in the case of
1 ${ }_{2}^{4} \mathrm{He}$
2 ${ }_{26} \mathrm{Fe}^{56}$
3 ${ }_{56} \mathrm{Ba}^{141}$
4 ${ }_{92} \mathrm{U}^{225}$
Explanation:
B The figure is a plot of the binding energy per nucleon $\left(\mathrm{E}_{\mathrm{bn}}\right)$ versus the mass number $(\mathrm{A})$. We notice that binding energy per nucleon of atomic number 56 $\left({ }_{26} \mathrm{Fe}^{56}\right)$ has maximum value.
Manipal UGET-2018
NUCLEAR PHYSICS
147374
Density of nuclear matter is nearly
1 $10^{26} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{24} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Explanation:
C The density of nuclear matter is $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
AMU-2017
NUCLEAR PHYSICS
147377
Which of the following particle when bombards on ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$ ?
1 Proton
2 Neutron
3 Electron
4 Alpha particle
5 Deutron
Explanation:
B When ${ }^{65} \mathrm{Cu}$ is bombard with a neutron ${ }^{65} \mathrm{Cu}+{ }_{0} \mathrm{n}^{1} \rightarrow{ }^{66} \mathrm{Cu}$
147363
In stable nuclei the number of Protons $(\mathrm{Z})$ and number of Neutrons $(N)$ are related as
1 $\mathrm{N} \leq \mathrm{Z}$
2 $\mathrm{N} \lt \mathrm{Z}$
3 $\mathrm{N}=\mathrm{Z}$
4 $\mathrm{N}=\mathrm{Z}=0$
Explanation:
C For stable nuclei the number of Protons (Z) and number of Neutrons $(\mathrm{N})$ are equal $\mathrm{Z}=\mathrm{N}$
AP EAMCET-25.09.2020
NUCLEAR PHYSICS
147365
${ }_{90}^{232}$ Th emits $6 \alpha$ and $4 \beta$ - particles and gets converted into a lead. The mass number and atomic number of lead is
1 208,82
2 82,208
3 210,82
4 210,84
Explanation:
A ${ }_{90} \operatorname{Th}^{232} \stackrel{6 \alpha}{\longrightarrow} 78 \mathrm{X}^{208} \stackrel{4 \beta}{\longrightarrow}{ }_{82} \mathrm{~Pb}^{208}$ $\mathrm{So}$, the mass number and atomic number of $\mathrm{Pb}$ is 208 and 82 .
AP EAMCET (23.09.2020) Shift-I
NUCLEAR PHYSICS
147372
The binding energy per nucleon is maximum in the case of
1 ${ }_{2}^{4} \mathrm{He}$
2 ${ }_{26} \mathrm{Fe}^{56}$
3 ${ }_{56} \mathrm{Ba}^{141}$
4 ${ }_{92} \mathrm{U}^{225}$
Explanation:
B The figure is a plot of the binding energy per nucleon $\left(\mathrm{E}_{\mathrm{bn}}\right)$ versus the mass number $(\mathrm{A})$. We notice that binding energy per nucleon of atomic number 56 $\left({ }_{26} \mathrm{Fe}^{56}\right)$ has maximum value.
Manipal UGET-2018
NUCLEAR PHYSICS
147374
Density of nuclear matter is nearly
1 $10^{26} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{24} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Explanation:
C The density of nuclear matter is $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
AMU-2017
NUCLEAR PHYSICS
147377
Which of the following particle when bombards on ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$ ?
1 Proton
2 Neutron
3 Electron
4 Alpha particle
5 Deutron
Explanation:
B When ${ }^{65} \mathrm{Cu}$ is bombard with a neutron ${ }^{65} \mathrm{Cu}+{ }_{0} \mathrm{n}^{1} \rightarrow{ }^{66} \mathrm{Cu}$
147363
In stable nuclei the number of Protons $(\mathrm{Z})$ and number of Neutrons $(N)$ are related as
1 $\mathrm{N} \leq \mathrm{Z}$
2 $\mathrm{N} \lt \mathrm{Z}$
3 $\mathrm{N}=\mathrm{Z}$
4 $\mathrm{N}=\mathrm{Z}=0$
Explanation:
C For stable nuclei the number of Protons (Z) and number of Neutrons $(\mathrm{N})$ are equal $\mathrm{Z}=\mathrm{N}$
AP EAMCET-25.09.2020
NUCLEAR PHYSICS
147365
${ }_{90}^{232}$ Th emits $6 \alpha$ and $4 \beta$ - particles and gets converted into a lead. The mass number and atomic number of lead is
1 208,82
2 82,208
3 210,82
4 210,84
Explanation:
A ${ }_{90} \operatorname{Th}^{232} \stackrel{6 \alpha}{\longrightarrow} 78 \mathrm{X}^{208} \stackrel{4 \beta}{\longrightarrow}{ }_{82} \mathrm{~Pb}^{208}$ $\mathrm{So}$, the mass number and atomic number of $\mathrm{Pb}$ is 208 and 82 .
AP EAMCET (23.09.2020) Shift-I
NUCLEAR PHYSICS
147372
The binding energy per nucleon is maximum in the case of
1 ${ }_{2}^{4} \mathrm{He}$
2 ${ }_{26} \mathrm{Fe}^{56}$
3 ${ }_{56} \mathrm{Ba}^{141}$
4 ${ }_{92} \mathrm{U}^{225}$
Explanation:
B The figure is a plot of the binding energy per nucleon $\left(\mathrm{E}_{\mathrm{bn}}\right)$ versus the mass number $(\mathrm{A})$. We notice that binding energy per nucleon of atomic number 56 $\left({ }_{26} \mathrm{Fe}^{56}\right)$ has maximum value.
Manipal UGET-2018
NUCLEAR PHYSICS
147374
Density of nuclear matter is nearly
1 $10^{26} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{24} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Explanation:
C The density of nuclear matter is $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
AMU-2017
NUCLEAR PHYSICS
147377
Which of the following particle when bombards on ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$ ?
1 Proton
2 Neutron
3 Electron
4 Alpha particle
5 Deutron
Explanation:
B When ${ }^{65} \mathrm{Cu}$ is bombard with a neutron ${ }^{65} \mathrm{Cu}+{ }_{0} \mathrm{n}^{1} \rightarrow{ }^{66} \mathrm{Cu}$
147363
In stable nuclei the number of Protons $(\mathrm{Z})$ and number of Neutrons $(N)$ are related as
1 $\mathrm{N} \leq \mathrm{Z}$
2 $\mathrm{N} \lt \mathrm{Z}$
3 $\mathrm{N}=\mathrm{Z}$
4 $\mathrm{N}=\mathrm{Z}=0$
Explanation:
C For stable nuclei the number of Protons (Z) and number of Neutrons $(\mathrm{N})$ are equal $\mathrm{Z}=\mathrm{N}$
AP EAMCET-25.09.2020
NUCLEAR PHYSICS
147365
${ }_{90}^{232}$ Th emits $6 \alpha$ and $4 \beta$ - particles and gets converted into a lead. The mass number and atomic number of lead is
1 208,82
2 82,208
3 210,82
4 210,84
Explanation:
A ${ }_{90} \operatorname{Th}^{232} \stackrel{6 \alpha}{\longrightarrow} 78 \mathrm{X}^{208} \stackrel{4 \beta}{\longrightarrow}{ }_{82} \mathrm{~Pb}^{208}$ $\mathrm{So}$, the mass number and atomic number of $\mathrm{Pb}$ is 208 and 82 .
AP EAMCET (23.09.2020) Shift-I
NUCLEAR PHYSICS
147372
The binding energy per nucleon is maximum in the case of
1 ${ }_{2}^{4} \mathrm{He}$
2 ${ }_{26} \mathrm{Fe}^{56}$
3 ${ }_{56} \mathrm{Ba}^{141}$
4 ${ }_{92} \mathrm{U}^{225}$
Explanation:
B The figure is a plot of the binding energy per nucleon $\left(\mathrm{E}_{\mathrm{bn}}\right)$ versus the mass number $(\mathrm{A})$. We notice that binding energy per nucleon of atomic number 56 $\left({ }_{26} \mathrm{Fe}^{56}\right)$ has maximum value.
Manipal UGET-2018
NUCLEAR PHYSICS
147374
Density of nuclear matter is nearly
1 $10^{26} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{24} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Explanation:
C The density of nuclear matter is $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
AMU-2017
NUCLEAR PHYSICS
147377
Which of the following particle when bombards on ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$ ?
1 Proton
2 Neutron
3 Electron
4 Alpha particle
5 Deutron
Explanation:
B When ${ }^{65} \mathrm{Cu}$ is bombard with a neutron ${ }^{65} \mathrm{Cu}+{ }_{0} \mathrm{n}^{1} \rightarrow{ }^{66} \mathrm{Cu}$