142612
The energy of a photon of light with wavelength \(5000 \AA\) is approximately \(2.5 \mathrm{eV}\). This way the energy of an X-ray photon with wavelength \(1 \AA\) would be
1 \(\frac{2.5}{(5000)^2} \mathrm{cV}\)
2 \(2.5 \times 5000 \mathrm{eV}\)
3 \(\frac{2.5}{(5000)^2} \mathrm{eV}\)
4 \(\frac{2.5}{5000} \mathrm{eV}\)
Explanation:
B Given, Wavelength \(\left(\lambda_1\right)=5000 \AA\), Energy \(\left(\mathrm{E}_1\right)=2.5 \mathrm{eV}\) When wavelength \(\left(\lambda_2\right)=1 \AA\), Energy \(\left(\mathrm{E}_2\right)=\) ? We know that, \(\mathrm{E}=\frac{\mathrm{hc}}{\lambda}\) \(\mathrm{E} \propto \frac{1}{\lambda} \quad(\because \mathrm{h} \& \mathrm{c} \text { have constant value })\) \(\frac{\mathrm{E}_1}{\mathrm{E}_2}=\frac{\lambda_2}{\lambda .1}\) \(\frac{2.5}{\mathrm{E}_2}=\frac{1}{5000}\) \(\mathrm{E}_2=2.5 \times 5000 \mathrm{eV}\)
AIIMS-2010
Dual nature of radiation and Matter
142613
Hard X-rays for the study of fractures in bones should have a minimum wavelength of \(10^{11} \mathrm{~m}\). The accelerating voltage for electrons in \(\mathrm{X}\)-ray machine should be
1 \( \lt 124.2 \mathrm{kV}\)
2 \(>124.2 \mathrm{kV}\)
3 Between \(60 \mathrm{kV}\) and \(70 \mathrm{kV}\)
142617
The frequencies of \(X\) rays, \(Y\) rays and Ultra violet rays are respectively \(p, q\) and \(r\) then
1 p \(>\) q, q \( \lt \) r
2 p \(>\) q, q \(>\) r
3 p \( \lt \) q, q \( \lt \) r
4 p \( \lt \) q, q \(>\) r
Explanation:
D Given, Frequencies of \(X\)-rays \(=p\) Frequencies of \(\gamma-\) rays \(=q\) Frequencies of ultraviolet rays \(=r\) We know, \(\mathrm{p}=10^{17} \text { to } 10^{20} \mathrm{~Hz}\) \(\mathrm{q}=10^{20} \text { to } 10^{24} \mathrm{~Hz}\) \(\mathrm{r}=10^{15} \text { to } 10^{17} \mathrm{~Hz}\) Hence, \(q>p\) and \(q>r\)
GUJCET 2016
Dual nature of radiation and Matter
142618
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the target metal. The potential difference applied across the cathode and the metal target is
142612
The energy of a photon of light with wavelength \(5000 \AA\) is approximately \(2.5 \mathrm{eV}\). This way the energy of an X-ray photon with wavelength \(1 \AA\) would be
1 \(\frac{2.5}{(5000)^2} \mathrm{cV}\)
2 \(2.5 \times 5000 \mathrm{eV}\)
3 \(\frac{2.5}{(5000)^2} \mathrm{eV}\)
4 \(\frac{2.5}{5000} \mathrm{eV}\)
Explanation:
B Given, Wavelength \(\left(\lambda_1\right)=5000 \AA\), Energy \(\left(\mathrm{E}_1\right)=2.5 \mathrm{eV}\) When wavelength \(\left(\lambda_2\right)=1 \AA\), Energy \(\left(\mathrm{E}_2\right)=\) ? We know that, \(\mathrm{E}=\frac{\mathrm{hc}}{\lambda}\) \(\mathrm{E} \propto \frac{1}{\lambda} \quad(\because \mathrm{h} \& \mathrm{c} \text { have constant value })\) \(\frac{\mathrm{E}_1}{\mathrm{E}_2}=\frac{\lambda_2}{\lambda .1}\) \(\frac{2.5}{\mathrm{E}_2}=\frac{1}{5000}\) \(\mathrm{E}_2=2.5 \times 5000 \mathrm{eV}\)
AIIMS-2010
Dual nature of radiation and Matter
142613
Hard X-rays for the study of fractures in bones should have a minimum wavelength of \(10^{11} \mathrm{~m}\). The accelerating voltage for electrons in \(\mathrm{X}\)-ray machine should be
1 \( \lt 124.2 \mathrm{kV}\)
2 \(>124.2 \mathrm{kV}\)
3 Between \(60 \mathrm{kV}\) and \(70 \mathrm{kV}\)
142617
The frequencies of \(X\) rays, \(Y\) rays and Ultra violet rays are respectively \(p, q\) and \(r\) then
1 p \(>\) q, q \( \lt \) r
2 p \(>\) q, q \(>\) r
3 p \( \lt \) q, q \( \lt \) r
4 p \( \lt \) q, q \(>\) r
Explanation:
D Given, Frequencies of \(X\)-rays \(=p\) Frequencies of \(\gamma-\) rays \(=q\) Frequencies of ultraviolet rays \(=r\) We know, \(\mathrm{p}=10^{17} \text { to } 10^{20} \mathrm{~Hz}\) \(\mathrm{q}=10^{20} \text { to } 10^{24} \mathrm{~Hz}\) \(\mathrm{r}=10^{15} \text { to } 10^{17} \mathrm{~Hz}\) Hence, \(q>p\) and \(q>r\)
GUJCET 2016
Dual nature of radiation and Matter
142618
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the target metal. The potential difference applied across the cathode and the metal target is
142612
The energy of a photon of light with wavelength \(5000 \AA\) is approximately \(2.5 \mathrm{eV}\). This way the energy of an X-ray photon with wavelength \(1 \AA\) would be
1 \(\frac{2.5}{(5000)^2} \mathrm{cV}\)
2 \(2.5 \times 5000 \mathrm{eV}\)
3 \(\frac{2.5}{(5000)^2} \mathrm{eV}\)
4 \(\frac{2.5}{5000} \mathrm{eV}\)
Explanation:
B Given, Wavelength \(\left(\lambda_1\right)=5000 \AA\), Energy \(\left(\mathrm{E}_1\right)=2.5 \mathrm{eV}\) When wavelength \(\left(\lambda_2\right)=1 \AA\), Energy \(\left(\mathrm{E}_2\right)=\) ? We know that, \(\mathrm{E}=\frac{\mathrm{hc}}{\lambda}\) \(\mathrm{E} \propto \frac{1}{\lambda} \quad(\because \mathrm{h} \& \mathrm{c} \text { have constant value })\) \(\frac{\mathrm{E}_1}{\mathrm{E}_2}=\frac{\lambda_2}{\lambda .1}\) \(\frac{2.5}{\mathrm{E}_2}=\frac{1}{5000}\) \(\mathrm{E}_2=2.5 \times 5000 \mathrm{eV}\)
AIIMS-2010
Dual nature of radiation and Matter
142613
Hard X-rays for the study of fractures in bones should have a minimum wavelength of \(10^{11} \mathrm{~m}\). The accelerating voltage for electrons in \(\mathrm{X}\)-ray machine should be
1 \( \lt 124.2 \mathrm{kV}\)
2 \(>124.2 \mathrm{kV}\)
3 Between \(60 \mathrm{kV}\) and \(70 \mathrm{kV}\)
142617
The frequencies of \(X\) rays, \(Y\) rays and Ultra violet rays are respectively \(p, q\) and \(r\) then
1 p \(>\) q, q \( \lt \) r
2 p \(>\) q, q \(>\) r
3 p \( \lt \) q, q \( \lt \) r
4 p \( \lt \) q, q \(>\) r
Explanation:
D Given, Frequencies of \(X\)-rays \(=p\) Frequencies of \(\gamma-\) rays \(=q\) Frequencies of ultraviolet rays \(=r\) We know, \(\mathrm{p}=10^{17} \text { to } 10^{20} \mathrm{~Hz}\) \(\mathrm{q}=10^{20} \text { to } 10^{24} \mathrm{~Hz}\) \(\mathrm{r}=10^{15} \text { to } 10^{17} \mathrm{~Hz}\) Hence, \(q>p\) and \(q>r\)
GUJCET 2016
Dual nature of radiation and Matter
142618
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the target metal. The potential difference applied across the cathode and the metal target is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Dual nature of radiation and Matter
142612
The energy of a photon of light with wavelength \(5000 \AA\) is approximately \(2.5 \mathrm{eV}\). This way the energy of an X-ray photon with wavelength \(1 \AA\) would be
1 \(\frac{2.5}{(5000)^2} \mathrm{cV}\)
2 \(2.5 \times 5000 \mathrm{eV}\)
3 \(\frac{2.5}{(5000)^2} \mathrm{eV}\)
4 \(\frac{2.5}{5000} \mathrm{eV}\)
Explanation:
B Given, Wavelength \(\left(\lambda_1\right)=5000 \AA\), Energy \(\left(\mathrm{E}_1\right)=2.5 \mathrm{eV}\) When wavelength \(\left(\lambda_2\right)=1 \AA\), Energy \(\left(\mathrm{E}_2\right)=\) ? We know that, \(\mathrm{E}=\frac{\mathrm{hc}}{\lambda}\) \(\mathrm{E} \propto \frac{1}{\lambda} \quad(\because \mathrm{h} \& \mathrm{c} \text { have constant value })\) \(\frac{\mathrm{E}_1}{\mathrm{E}_2}=\frac{\lambda_2}{\lambda .1}\) \(\frac{2.5}{\mathrm{E}_2}=\frac{1}{5000}\) \(\mathrm{E}_2=2.5 \times 5000 \mathrm{eV}\)
AIIMS-2010
Dual nature of radiation and Matter
142613
Hard X-rays for the study of fractures in bones should have a minimum wavelength of \(10^{11} \mathrm{~m}\). The accelerating voltage for electrons in \(\mathrm{X}\)-ray machine should be
1 \( \lt 124.2 \mathrm{kV}\)
2 \(>124.2 \mathrm{kV}\)
3 Between \(60 \mathrm{kV}\) and \(70 \mathrm{kV}\)
142617
The frequencies of \(X\) rays, \(Y\) rays and Ultra violet rays are respectively \(p, q\) and \(r\) then
1 p \(>\) q, q \( \lt \) r
2 p \(>\) q, q \(>\) r
3 p \( \lt \) q, q \( \lt \) r
4 p \( \lt \) q, q \(>\) r
Explanation:
D Given, Frequencies of \(X\)-rays \(=p\) Frequencies of \(\gamma-\) rays \(=q\) Frequencies of ultraviolet rays \(=r\) We know, \(\mathrm{p}=10^{17} \text { to } 10^{20} \mathrm{~Hz}\) \(\mathrm{q}=10^{20} \text { to } 10^{24} \mathrm{~Hz}\) \(\mathrm{r}=10^{15} \text { to } 10^{17} \mathrm{~Hz}\) Hence, \(q>p\) and \(q>r\)
GUJCET 2016
Dual nature of radiation and Matter
142618
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the target metal. The potential difference applied across the cathode and the metal target is