Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142576 The de-Broglie wavelength of a particle moving with a velocity \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\) is equal to the wavelength of a photon. The ratio of kinetic energy of the photon. The ratio of kinetic energy of the particle to the energy of the photon is :
(Velocity of light is \(3 \times 10^8 \mathrm{~m} / \mathrm{s}\) )

1 \(\frac{1}{8}\)
2 \(\frac{3}{8}\)
3 \(\frac{5}{8}\)
4 \(\frac{7}{8}\)
Dual nature of radiation and Matter

142577 The value of de-Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \mathrm{~m} / \mathrm{s}\) is approximately
[Planck's constant \(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) mass of electron \(=\mathbf{9} \times 10^{-31} \mathrm{~kg}\) ]

1 \(11 \AA\)
2 \(111 \AA\)
3 \(211 \AA\)
4 \(311 \AA\)
Dual nature of radiation and Matter

142578 Electrons accelerated by a potential of \(V\) volt strike a target material to produce continuous X-rays. Ratio between the de-Broglie wavelength of the electrons striking the target and the shortest wavelength of the continuous \(\mathrm{X}\)-rays emitted is

1 \(\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}\)
2 \(\frac{1}{\mathrm{c}} \sqrt{\frac{2 \mathrm{~m}}{\mathrm{Ve}}}\)
3 \(\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}\)
4 \(\frac{\mathrm{hc}}{\sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}}\)
Dual nature of radiation and Matter

142579 The de-Broglie wavelength of an electron having \(80 \mathrm{eV}\) energy is nearly
\(\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)\)
Mass of the electron \(=\mathbf{9} \times \mathbf{1 0}^{-\mathbf{3 1}} \mathrm{kg}\)
Planck's constant \(=\mathbf{6 . 6} \times \mathbf{1 0}^{-34} \mathrm{~J}-\mathrm{s}\)

1 \(140 \AA\)
2 \(0.14 \AA\)
3 \(14 \AA\)
4 \(1.4 \AA\)
Dual nature of radiation and Matter

142580 In Compton scattering process, the incident \(X\) radiation is scattered at an angle \(60^{\circ}\). The wavelength of the scattered radiation is \(0.22 \AA\). The wavelength of the incident \(\mathrm{X}\)-radiation in \(\AA\) units is

1 0.508
2 0.408
3 0.232
4 0.208
Dual nature of radiation and Matter

142576 The de-Broglie wavelength of a particle moving with a velocity \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\) is equal to the wavelength of a photon. The ratio of kinetic energy of the photon. The ratio of kinetic energy of the particle to the energy of the photon is :
(Velocity of light is \(3 \times 10^8 \mathrm{~m} / \mathrm{s}\) )

1 \(\frac{1}{8}\)
2 \(\frac{3}{8}\)
3 \(\frac{5}{8}\)
4 \(\frac{7}{8}\)
Dual nature of radiation and Matter

142577 The value of de-Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \mathrm{~m} / \mathrm{s}\) is approximately
[Planck's constant \(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) mass of electron \(=\mathbf{9} \times 10^{-31} \mathrm{~kg}\) ]

1 \(11 \AA\)
2 \(111 \AA\)
3 \(211 \AA\)
4 \(311 \AA\)
Dual nature of radiation and Matter

142578 Electrons accelerated by a potential of \(V\) volt strike a target material to produce continuous X-rays. Ratio between the de-Broglie wavelength of the electrons striking the target and the shortest wavelength of the continuous \(\mathrm{X}\)-rays emitted is

1 \(\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}\)
2 \(\frac{1}{\mathrm{c}} \sqrt{\frac{2 \mathrm{~m}}{\mathrm{Ve}}}\)
3 \(\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}\)
4 \(\frac{\mathrm{hc}}{\sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}}\)
Dual nature of radiation and Matter

142579 The de-Broglie wavelength of an electron having \(80 \mathrm{eV}\) energy is nearly
\(\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)\)
Mass of the electron \(=\mathbf{9} \times \mathbf{1 0}^{-\mathbf{3 1}} \mathrm{kg}\)
Planck's constant \(=\mathbf{6 . 6} \times \mathbf{1 0}^{-34} \mathrm{~J}-\mathrm{s}\)

1 \(140 \AA\)
2 \(0.14 \AA\)
3 \(14 \AA\)
4 \(1.4 \AA\)
Dual nature of radiation and Matter

142580 In Compton scattering process, the incident \(X\) radiation is scattered at an angle \(60^{\circ}\). The wavelength of the scattered radiation is \(0.22 \AA\). The wavelength of the incident \(\mathrm{X}\)-radiation in \(\AA\) units is

1 0.508
2 0.408
3 0.232
4 0.208
Dual nature of radiation and Matter

142576 The de-Broglie wavelength of a particle moving with a velocity \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\) is equal to the wavelength of a photon. The ratio of kinetic energy of the photon. The ratio of kinetic energy of the particle to the energy of the photon is :
(Velocity of light is \(3 \times 10^8 \mathrm{~m} / \mathrm{s}\) )

1 \(\frac{1}{8}\)
2 \(\frac{3}{8}\)
3 \(\frac{5}{8}\)
4 \(\frac{7}{8}\)
Dual nature of radiation and Matter

142577 The value of de-Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \mathrm{~m} / \mathrm{s}\) is approximately
[Planck's constant \(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) mass of electron \(=\mathbf{9} \times 10^{-31} \mathrm{~kg}\) ]

1 \(11 \AA\)
2 \(111 \AA\)
3 \(211 \AA\)
4 \(311 \AA\)
Dual nature of radiation and Matter

142578 Electrons accelerated by a potential of \(V\) volt strike a target material to produce continuous X-rays. Ratio between the de-Broglie wavelength of the electrons striking the target and the shortest wavelength of the continuous \(\mathrm{X}\)-rays emitted is

1 \(\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}\)
2 \(\frac{1}{\mathrm{c}} \sqrt{\frac{2 \mathrm{~m}}{\mathrm{Ve}}}\)
3 \(\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}\)
4 \(\frac{\mathrm{hc}}{\sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}}\)
Dual nature of radiation and Matter

142579 The de-Broglie wavelength of an electron having \(80 \mathrm{eV}\) energy is nearly
\(\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)\)
Mass of the electron \(=\mathbf{9} \times \mathbf{1 0}^{-\mathbf{3 1}} \mathrm{kg}\)
Planck's constant \(=\mathbf{6 . 6} \times \mathbf{1 0}^{-34} \mathrm{~J}-\mathrm{s}\)

1 \(140 \AA\)
2 \(0.14 \AA\)
3 \(14 \AA\)
4 \(1.4 \AA\)
Dual nature of radiation and Matter

142580 In Compton scattering process, the incident \(X\) radiation is scattered at an angle \(60^{\circ}\). The wavelength of the scattered radiation is \(0.22 \AA\). The wavelength of the incident \(\mathrm{X}\)-radiation in \(\AA\) units is

1 0.508
2 0.408
3 0.232
4 0.208
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142576 The de-Broglie wavelength of a particle moving with a velocity \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\) is equal to the wavelength of a photon. The ratio of kinetic energy of the photon. The ratio of kinetic energy of the particle to the energy of the photon is :
(Velocity of light is \(3 \times 10^8 \mathrm{~m} / \mathrm{s}\) )

1 \(\frac{1}{8}\)
2 \(\frac{3}{8}\)
3 \(\frac{5}{8}\)
4 \(\frac{7}{8}\)
Dual nature of radiation and Matter

142577 The value of de-Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \mathrm{~m} / \mathrm{s}\) is approximately
[Planck's constant \(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) mass of electron \(=\mathbf{9} \times 10^{-31} \mathrm{~kg}\) ]

1 \(11 \AA\)
2 \(111 \AA\)
3 \(211 \AA\)
4 \(311 \AA\)
Dual nature of radiation and Matter

142578 Electrons accelerated by a potential of \(V\) volt strike a target material to produce continuous X-rays. Ratio between the de-Broglie wavelength of the electrons striking the target and the shortest wavelength of the continuous \(\mathrm{X}\)-rays emitted is

1 \(\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}\)
2 \(\frac{1}{\mathrm{c}} \sqrt{\frac{2 \mathrm{~m}}{\mathrm{Ve}}}\)
3 \(\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}\)
4 \(\frac{\mathrm{hc}}{\sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}}\)
Dual nature of radiation and Matter

142579 The de-Broglie wavelength of an electron having \(80 \mathrm{eV}\) energy is nearly
\(\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)\)
Mass of the electron \(=\mathbf{9} \times \mathbf{1 0}^{-\mathbf{3 1}} \mathrm{kg}\)
Planck's constant \(=\mathbf{6 . 6} \times \mathbf{1 0}^{-34} \mathrm{~J}-\mathrm{s}\)

1 \(140 \AA\)
2 \(0.14 \AA\)
3 \(14 \AA\)
4 \(1.4 \AA\)
Dual nature of radiation and Matter

142580 In Compton scattering process, the incident \(X\) radiation is scattered at an angle \(60^{\circ}\). The wavelength of the scattered radiation is \(0.22 \AA\). The wavelength of the incident \(\mathrm{X}\)-radiation in \(\AA\) units is

1 0.508
2 0.408
3 0.232
4 0.208
Dual nature of radiation and Matter

142576 The de-Broglie wavelength of a particle moving with a velocity \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\) is equal to the wavelength of a photon. The ratio of kinetic energy of the photon. The ratio of kinetic energy of the particle to the energy of the photon is :
(Velocity of light is \(3 \times 10^8 \mathrm{~m} / \mathrm{s}\) )

1 \(\frac{1}{8}\)
2 \(\frac{3}{8}\)
3 \(\frac{5}{8}\)
4 \(\frac{7}{8}\)
Dual nature of radiation and Matter

142577 The value of de-Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \mathrm{~m} / \mathrm{s}\) is approximately
[Planck's constant \(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) mass of electron \(=\mathbf{9} \times 10^{-31} \mathrm{~kg}\) ]

1 \(11 \AA\)
2 \(111 \AA\)
3 \(211 \AA\)
4 \(311 \AA\)
Dual nature of radiation and Matter

142578 Electrons accelerated by a potential of \(V\) volt strike a target material to produce continuous X-rays. Ratio between the de-Broglie wavelength of the electrons striking the target and the shortest wavelength of the continuous \(\mathrm{X}\)-rays emitted is

1 \(\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}\)
2 \(\frac{1}{\mathrm{c}} \sqrt{\frac{2 \mathrm{~m}}{\mathrm{Ve}}}\)
3 \(\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}\)
4 \(\frac{\mathrm{hc}}{\sqrt{\frac{\mathrm{Ve}}{2 \mathrm{~m}}}}\)
Dual nature of radiation and Matter

142579 The de-Broglie wavelength of an electron having \(80 \mathrm{eV}\) energy is nearly
\(\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)\)
Mass of the electron \(=\mathbf{9} \times \mathbf{1 0}^{-\mathbf{3 1}} \mathrm{kg}\)
Planck's constant \(=\mathbf{6 . 6} \times \mathbf{1 0}^{-34} \mathrm{~J}-\mathrm{s}\)

1 \(140 \AA\)
2 \(0.14 \AA\)
3 \(14 \AA\)
4 \(1.4 \AA\)
Dual nature of radiation and Matter

142580 In Compton scattering process, the incident \(X\) radiation is scattered at an angle \(60^{\circ}\). The wavelength of the scattered radiation is \(0.22 \AA\). The wavelength of the incident \(\mathrm{X}\)-radiation in \(\AA\) units is

1 0.508
2 0.408
3 0.232
4 0.208