142550
Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.
1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Explanation:
B Given that, Velocity of bullet $(\mathrm{v})=900 \mathrm{~m} / \mathrm{s}$ Mass of bullet $(\mathrm{m})=100 \mathrm{gm}=0.1 \mathrm{~kg}$ We know, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.6 \times 10^{-34}}{0.1 \times 900}$ $\lambda=7.3 \times 10^{-36} \mathrm{~m} \square 7.4 \times 10^{-36} \mathrm{~m}$
AMU-2013
Dual nature of radiation and Matter
142551
When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?
A We know that $\mathrm{k}_{1}=\frac{\mathrm{hc}}{\lambda_{1}}-\phi$ $\mathrm{k}_{2}=\frac{\mathrm{hc}}{\lambda_{2}}-\phi$ Subtraction equation (i) from (ii) $\mathrm{k}_{1}-\mathrm{k}_{2}=\left(\frac{\mathrm{hc}}{\lambda_{1}}-\phi\right)-\left(\frac{\mathrm{hc}}{\lambda_{2}}-\phi\right)$ $=\frac{\mathrm{hc}}{\lambda_{1}}-\frac{\mathrm{hc}}{\lambda_{2}}$ $\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)=\frac{\mathrm{hc}}{\lambda_{1} \cdot \lambda_{2}}\left(\lambda_{2}-\lambda_{1}\right)$ $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{2} \cdot \lambda_{1}}{\lambda_{2}-\lambda_{1}}$
AMU-2013
Dual nature of radiation and Matter
142553
Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.
142550
Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.
1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Explanation:
B Given that, Velocity of bullet $(\mathrm{v})=900 \mathrm{~m} / \mathrm{s}$ Mass of bullet $(\mathrm{m})=100 \mathrm{gm}=0.1 \mathrm{~kg}$ We know, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.6 \times 10^{-34}}{0.1 \times 900}$ $\lambda=7.3 \times 10^{-36} \mathrm{~m} \square 7.4 \times 10^{-36} \mathrm{~m}$
AMU-2013
Dual nature of radiation and Matter
142551
When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?
A We know that $\mathrm{k}_{1}=\frac{\mathrm{hc}}{\lambda_{1}}-\phi$ $\mathrm{k}_{2}=\frac{\mathrm{hc}}{\lambda_{2}}-\phi$ Subtraction equation (i) from (ii) $\mathrm{k}_{1}-\mathrm{k}_{2}=\left(\frac{\mathrm{hc}}{\lambda_{1}}-\phi\right)-\left(\frac{\mathrm{hc}}{\lambda_{2}}-\phi\right)$ $=\frac{\mathrm{hc}}{\lambda_{1}}-\frac{\mathrm{hc}}{\lambda_{2}}$ $\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)=\frac{\mathrm{hc}}{\lambda_{1} \cdot \lambda_{2}}\left(\lambda_{2}-\lambda_{1}\right)$ $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{2} \cdot \lambda_{1}}{\lambda_{2}-\lambda_{1}}$
AMU-2013
Dual nature of radiation and Matter
142553
Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.
142550
Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.
1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Explanation:
B Given that, Velocity of bullet $(\mathrm{v})=900 \mathrm{~m} / \mathrm{s}$ Mass of bullet $(\mathrm{m})=100 \mathrm{gm}=0.1 \mathrm{~kg}$ We know, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.6 \times 10^{-34}}{0.1 \times 900}$ $\lambda=7.3 \times 10^{-36} \mathrm{~m} \square 7.4 \times 10^{-36} \mathrm{~m}$
AMU-2013
Dual nature of radiation and Matter
142551
When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?
A We know that $\mathrm{k}_{1}=\frac{\mathrm{hc}}{\lambda_{1}}-\phi$ $\mathrm{k}_{2}=\frac{\mathrm{hc}}{\lambda_{2}}-\phi$ Subtraction equation (i) from (ii) $\mathrm{k}_{1}-\mathrm{k}_{2}=\left(\frac{\mathrm{hc}}{\lambda_{1}}-\phi\right)-\left(\frac{\mathrm{hc}}{\lambda_{2}}-\phi\right)$ $=\frac{\mathrm{hc}}{\lambda_{1}}-\frac{\mathrm{hc}}{\lambda_{2}}$ $\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)=\frac{\mathrm{hc}}{\lambda_{1} \cdot \lambda_{2}}\left(\lambda_{2}-\lambda_{1}\right)$ $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{2} \cdot \lambda_{1}}{\lambda_{2}-\lambda_{1}}$
AMU-2013
Dual nature of radiation and Matter
142553
Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.
142550
Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.
1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Explanation:
B Given that, Velocity of bullet $(\mathrm{v})=900 \mathrm{~m} / \mathrm{s}$ Mass of bullet $(\mathrm{m})=100 \mathrm{gm}=0.1 \mathrm{~kg}$ We know, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.6 \times 10^{-34}}{0.1 \times 900}$ $\lambda=7.3 \times 10^{-36} \mathrm{~m} \square 7.4 \times 10^{-36} \mathrm{~m}$
AMU-2013
Dual nature of radiation and Matter
142551
When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?
A We know that $\mathrm{k}_{1}=\frac{\mathrm{hc}}{\lambda_{1}}-\phi$ $\mathrm{k}_{2}=\frac{\mathrm{hc}}{\lambda_{2}}-\phi$ Subtraction equation (i) from (ii) $\mathrm{k}_{1}-\mathrm{k}_{2}=\left(\frac{\mathrm{hc}}{\lambda_{1}}-\phi\right)-\left(\frac{\mathrm{hc}}{\lambda_{2}}-\phi\right)$ $=\frac{\mathrm{hc}}{\lambda_{1}}-\frac{\mathrm{hc}}{\lambda_{2}}$ $\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)=\frac{\mathrm{hc}}{\lambda_{1} \cdot \lambda_{2}}\left(\lambda_{2}-\lambda_{1}\right)$ $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{2} \cdot \lambda_{1}}{\lambda_{2}-\lambda_{1}}$
AMU-2013
Dual nature of radiation and Matter
142553
Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.