Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142539 If an electron has an energy such that its deBroglie wavelength is $5500 \mathrm{~A}$, then the energy value of that electron is $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right.$. $\mathrm{m}_{\mathrm{e}}=$ $9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $8 \times 10^{-20}$
2 $8 \times 10^{-10}$
3 8
4 $8 \times 10^{-25}$
Dual nature of radiation and Matter

142540 If the velocity of a particle is reduced to half what is the percentage increase in its de-Broglie wavelength?

1 100
2 200
3 400
4 50
Dual nature of radiation and Matter

142541 The energy in $\mathrm{MeV}$ is released due to transformation of $1 \mathrm{~kg}$ mass completely into energy, is $\left(\mathrm{C}=\mathbf{3} \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

1 $7.625 \times 10 \mathrm{MeV}$
2 $10.5 \times 10^{29} \mathrm{MeV}$
3 $2.8 \times 10^{-28} \mathrm{MeV}$
4 $5.625 \times 10^{29} \mathrm{MeV}$
Dual nature of radiation and Matter

142542 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right)$.

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 None of these
Dual nature of radiation and Matter

142543 The de Broglie wavelength, $\lambda$, for hydrogen atom electron in the nth energy level goes as

1 $\lambda \propto n^{1 / 2}$
2 $\lambda \propto n^{-1 / 2}$
3 $\lambda \propto \mathrm{n}$
4 $\lambda \propto \mathrm{n}^{-1}$
Dual nature of radiation and Matter

142539 If an electron has an energy such that its deBroglie wavelength is $5500 \mathrm{~A}$, then the energy value of that electron is $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right.$. $\mathrm{m}_{\mathrm{e}}=$ $9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $8 \times 10^{-20}$
2 $8 \times 10^{-10}$
3 8
4 $8 \times 10^{-25}$
Dual nature of radiation and Matter

142540 If the velocity of a particle is reduced to half what is the percentage increase in its de-Broglie wavelength?

1 100
2 200
3 400
4 50
Dual nature of radiation and Matter

142541 The energy in $\mathrm{MeV}$ is released due to transformation of $1 \mathrm{~kg}$ mass completely into energy, is $\left(\mathrm{C}=\mathbf{3} \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

1 $7.625 \times 10 \mathrm{MeV}$
2 $10.5 \times 10^{29} \mathrm{MeV}$
3 $2.8 \times 10^{-28} \mathrm{MeV}$
4 $5.625 \times 10^{29} \mathrm{MeV}$
Dual nature of radiation and Matter

142542 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right)$.

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 None of these
Dual nature of radiation and Matter

142543 The de Broglie wavelength, $\lambda$, for hydrogen atom electron in the nth energy level goes as

1 $\lambda \propto n^{1 / 2}$
2 $\lambda \propto n^{-1 / 2}$
3 $\lambda \propto \mathrm{n}$
4 $\lambda \propto \mathrm{n}^{-1}$
Dual nature of radiation and Matter

142539 If an electron has an energy such that its deBroglie wavelength is $5500 \mathrm{~A}$, then the energy value of that electron is $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right.$. $\mathrm{m}_{\mathrm{e}}=$ $9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $8 \times 10^{-20}$
2 $8 \times 10^{-10}$
3 8
4 $8 \times 10^{-25}$
Dual nature of radiation and Matter

142540 If the velocity of a particle is reduced to half what is the percentage increase in its de-Broglie wavelength?

1 100
2 200
3 400
4 50
Dual nature of radiation and Matter

142541 The energy in $\mathrm{MeV}$ is released due to transformation of $1 \mathrm{~kg}$ mass completely into energy, is $\left(\mathrm{C}=\mathbf{3} \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

1 $7.625 \times 10 \mathrm{MeV}$
2 $10.5 \times 10^{29} \mathrm{MeV}$
3 $2.8 \times 10^{-28} \mathrm{MeV}$
4 $5.625 \times 10^{29} \mathrm{MeV}$
Dual nature of radiation and Matter

142542 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right)$.

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 None of these
Dual nature of radiation and Matter

142543 The de Broglie wavelength, $\lambda$, for hydrogen atom electron in the nth energy level goes as

1 $\lambda \propto n^{1 / 2}$
2 $\lambda \propto n^{-1 / 2}$
3 $\lambda \propto \mathrm{n}$
4 $\lambda \propto \mathrm{n}^{-1}$
Dual nature of radiation and Matter

142539 If an electron has an energy such that its deBroglie wavelength is $5500 \mathrm{~A}$, then the energy value of that electron is $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right.$. $\mathrm{m}_{\mathrm{e}}=$ $9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $8 \times 10^{-20}$
2 $8 \times 10^{-10}$
3 8
4 $8 \times 10^{-25}$
Dual nature of radiation and Matter

142540 If the velocity of a particle is reduced to half what is the percentage increase in its de-Broglie wavelength?

1 100
2 200
3 400
4 50
Dual nature of radiation and Matter

142541 The energy in $\mathrm{MeV}$ is released due to transformation of $1 \mathrm{~kg}$ mass completely into energy, is $\left(\mathrm{C}=\mathbf{3} \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

1 $7.625 \times 10 \mathrm{MeV}$
2 $10.5 \times 10^{29} \mathrm{MeV}$
3 $2.8 \times 10^{-28} \mathrm{MeV}$
4 $5.625 \times 10^{29} \mathrm{MeV}$
Dual nature of radiation and Matter

142542 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right)$.

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 None of these
Dual nature of radiation and Matter

142543 The de Broglie wavelength, $\lambda$, for hydrogen atom electron in the nth energy level goes as

1 $\lambda \propto n^{1 / 2}$
2 $\lambda \propto n^{-1 / 2}$
3 $\lambda \propto \mathrm{n}$
4 $\lambda \propto \mathrm{n}^{-1}$
Dual nature of radiation and Matter

142539 If an electron has an energy such that its deBroglie wavelength is $5500 \mathrm{~A}$, then the energy value of that electron is $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right.$. $\mathrm{m}_{\mathrm{e}}=$ $9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $8 \times 10^{-20}$
2 $8 \times 10^{-10}$
3 8
4 $8 \times 10^{-25}$
Dual nature of radiation and Matter

142540 If the velocity of a particle is reduced to half what is the percentage increase in its de-Broglie wavelength?

1 100
2 200
3 400
4 50
Dual nature of radiation and Matter

142541 The energy in $\mathrm{MeV}$ is released due to transformation of $1 \mathrm{~kg}$ mass completely into energy, is $\left(\mathrm{C}=\mathbf{3} \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

1 $7.625 \times 10 \mathrm{MeV}$
2 $10.5 \times 10^{29} \mathrm{MeV}$
3 $2.8 \times 10^{-28} \mathrm{MeV}$
4 $5.625 \times 10^{29} \mathrm{MeV}$
Dual nature of radiation and Matter

142542 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right)$.

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 None of these
Dual nature of radiation and Matter

142543 The de Broglie wavelength, $\lambda$, for hydrogen atom electron in the nth energy level goes as

1 $\lambda \propto n^{1 / 2}$
2 $\lambda \propto n^{-1 / 2}$
3 $\lambda \propto \mathrm{n}$
4 $\lambda \propto \mathrm{n}^{-1}$