Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142454 A particle of mass $m$ is projected from ground with velocity $u$ making angle $\theta$ with the vertical. The de-Broglie wavelength of the particle at the highest point is.

1 $\infty$
2 $\mathrm{h} / \mathrm{mu} \sin \theta$
3 $\mathrm{h} / \mathrm{mu} \cos \theta$
4 $\mathrm{h} / \mathrm{mu}$
Dual nature of radiation and Matter

142464 Which of the following figure represents the variation of particle momentum and associated de Broglie wavelength?

1
2
3
4
Dual nature of radiation and Matter

142472 In Davission- Germer experiment maximum intensity is observed at

1 $50^{\circ}$ and $54 \mathrm{~V}$
2 $54^{\circ}$ and $50 \mathrm{~V}$
3 $50^{\circ}$ and $50 \mathrm{~V}$
4 $65^{\circ}$ and $50 \mathrm{~V}$
Dual nature of radiation and Matter

142475 An electron of mass ' $m$ ', when accelerated through a potential $v$ has de-Broglie wavelength $\lambda$. The de-Broglie wavelength associated with a proton of mass $M$ accelerated through the same potential difference will be -

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\lambda\left(\frac{\mathrm{M}}{\mathrm{m}}\right)$
4 $\lambda\left(\frac{\mathrm{m}}{\mathrm{M}}\right)$
Dual nature of radiation and Matter

142483 The minimum wavelength of $X$ - ray emitted from $X$-ray machine operating at an accelerating potential of $V$ volts is:

1 $\frac{\mathrm{hc}}{\mathrm{eV}}$
2 $\frac{\mathrm{Vc}}{\mathrm{eh}}$
3 $\frac{\mathrm{eh}}{\mathrm{Vc}}$
4 $\frac{\mathrm{eV}}{\mathrm{hc}}$
Dual nature of radiation and Matter

142454 A particle of mass $m$ is projected from ground with velocity $u$ making angle $\theta$ with the vertical. The de-Broglie wavelength of the particle at the highest point is.

1 $\infty$
2 $\mathrm{h} / \mathrm{mu} \sin \theta$
3 $\mathrm{h} / \mathrm{mu} \cos \theta$
4 $\mathrm{h} / \mathrm{mu}$
Dual nature of radiation and Matter

142464 Which of the following figure represents the variation of particle momentum and associated de Broglie wavelength?

1
2
3
4
Dual nature of radiation and Matter

142472 In Davission- Germer experiment maximum intensity is observed at

1 $50^{\circ}$ and $54 \mathrm{~V}$
2 $54^{\circ}$ and $50 \mathrm{~V}$
3 $50^{\circ}$ and $50 \mathrm{~V}$
4 $65^{\circ}$ and $50 \mathrm{~V}$
Dual nature of radiation and Matter

142475 An electron of mass ' $m$ ', when accelerated through a potential $v$ has de-Broglie wavelength $\lambda$. The de-Broglie wavelength associated with a proton of mass $M$ accelerated through the same potential difference will be -

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\lambda\left(\frac{\mathrm{M}}{\mathrm{m}}\right)$
4 $\lambda\left(\frac{\mathrm{m}}{\mathrm{M}}\right)$
Dual nature of radiation and Matter

142483 The minimum wavelength of $X$ - ray emitted from $X$-ray machine operating at an accelerating potential of $V$ volts is:

1 $\frac{\mathrm{hc}}{\mathrm{eV}}$
2 $\frac{\mathrm{Vc}}{\mathrm{eh}}$
3 $\frac{\mathrm{eh}}{\mathrm{Vc}}$
4 $\frac{\mathrm{eV}}{\mathrm{hc}}$
Dual nature of radiation and Matter

142454 A particle of mass $m$ is projected from ground with velocity $u$ making angle $\theta$ with the vertical. The de-Broglie wavelength of the particle at the highest point is.

1 $\infty$
2 $\mathrm{h} / \mathrm{mu} \sin \theta$
3 $\mathrm{h} / \mathrm{mu} \cos \theta$
4 $\mathrm{h} / \mathrm{mu}$
Dual nature of radiation and Matter

142464 Which of the following figure represents the variation of particle momentum and associated de Broglie wavelength?

1
2
3
4
Dual nature of radiation and Matter

142472 In Davission- Germer experiment maximum intensity is observed at

1 $50^{\circ}$ and $54 \mathrm{~V}$
2 $54^{\circ}$ and $50 \mathrm{~V}$
3 $50^{\circ}$ and $50 \mathrm{~V}$
4 $65^{\circ}$ and $50 \mathrm{~V}$
Dual nature of radiation and Matter

142475 An electron of mass ' $m$ ', when accelerated through a potential $v$ has de-Broglie wavelength $\lambda$. The de-Broglie wavelength associated with a proton of mass $M$ accelerated through the same potential difference will be -

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\lambda\left(\frac{\mathrm{M}}{\mathrm{m}}\right)$
4 $\lambda\left(\frac{\mathrm{m}}{\mathrm{M}}\right)$
Dual nature of radiation and Matter

142483 The minimum wavelength of $X$ - ray emitted from $X$-ray machine operating at an accelerating potential of $V$ volts is:

1 $\frac{\mathrm{hc}}{\mathrm{eV}}$
2 $\frac{\mathrm{Vc}}{\mathrm{eh}}$
3 $\frac{\mathrm{eh}}{\mathrm{Vc}}$
4 $\frac{\mathrm{eV}}{\mathrm{hc}}$
Dual nature of radiation and Matter

142454 A particle of mass $m$ is projected from ground with velocity $u$ making angle $\theta$ with the vertical. The de-Broglie wavelength of the particle at the highest point is.

1 $\infty$
2 $\mathrm{h} / \mathrm{mu} \sin \theta$
3 $\mathrm{h} / \mathrm{mu} \cos \theta$
4 $\mathrm{h} / \mathrm{mu}$
Dual nature of radiation and Matter

142464 Which of the following figure represents the variation of particle momentum and associated de Broglie wavelength?

1
2
3
4
Dual nature of radiation and Matter

142472 In Davission- Germer experiment maximum intensity is observed at

1 $50^{\circ}$ and $54 \mathrm{~V}$
2 $54^{\circ}$ and $50 \mathrm{~V}$
3 $50^{\circ}$ and $50 \mathrm{~V}$
4 $65^{\circ}$ and $50 \mathrm{~V}$
Dual nature of radiation and Matter

142475 An electron of mass ' $m$ ', when accelerated through a potential $v$ has de-Broglie wavelength $\lambda$. The de-Broglie wavelength associated with a proton of mass $M$ accelerated through the same potential difference will be -

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\lambda\left(\frac{\mathrm{M}}{\mathrm{m}}\right)$
4 $\lambda\left(\frac{\mathrm{m}}{\mathrm{M}}\right)$
Dual nature of radiation and Matter

142483 The minimum wavelength of $X$ - ray emitted from $X$-ray machine operating at an accelerating potential of $V$ volts is:

1 $\frac{\mathrm{hc}}{\mathrm{eV}}$
2 $\frac{\mathrm{Vc}}{\mathrm{eh}}$
3 $\frac{\mathrm{eh}}{\mathrm{Vc}}$
4 $\frac{\mathrm{eV}}{\mathrm{hc}}$
Dual nature of radiation and Matter

142454 A particle of mass $m$ is projected from ground with velocity $u$ making angle $\theta$ with the vertical. The de-Broglie wavelength of the particle at the highest point is.

1 $\infty$
2 $\mathrm{h} / \mathrm{mu} \sin \theta$
3 $\mathrm{h} / \mathrm{mu} \cos \theta$
4 $\mathrm{h} / \mathrm{mu}$
Dual nature of radiation and Matter

142464 Which of the following figure represents the variation of particle momentum and associated de Broglie wavelength?

1
2
3
4
Dual nature of radiation and Matter

142472 In Davission- Germer experiment maximum intensity is observed at

1 $50^{\circ}$ and $54 \mathrm{~V}$
2 $54^{\circ}$ and $50 \mathrm{~V}$
3 $50^{\circ}$ and $50 \mathrm{~V}$
4 $65^{\circ}$ and $50 \mathrm{~V}$
Dual nature of radiation and Matter

142475 An electron of mass ' $m$ ', when accelerated through a potential $v$ has de-Broglie wavelength $\lambda$. The de-Broglie wavelength associated with a proton of mass $M$ accelerated through the same potential difference will be -

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\lambda\left(\frac{\mathrm{M}}{\mathrm{m}}\right)$
4 $\lambda\left(\frac{\mathrm{m}}{\mathrm{M}}\right)$
Dual nature of radiation and Matter

142483 The minimum wavelength of $X$ - ray emitted from $X$-ray machine operating at an accelerating potential of $V$ volts is:

1 $\frac{\mathrm{hc}}{\mathrm{eV}}$
2 $\frac{\mathrm{Vc}}{\mathrm{eh}}$
3 $\frac{\mathrm{eh}}{\mathrm{Vc}}$
4 $\frac{\mathrm{eV}}{\mathrm{hc}}$