Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142581 If \(\lambda_0\) is the de-Broglie wavelength for a proton accelerated through a potential difference of \(100 \mathrm{~V}\), the de-Broglie wavelength for \(\alpha\)-particle accelerated through the same potential difference is

1 \(2 \sqrt{2 \lambda_0}\)
2 \(\frac{\lambda_{\mathrm{o}}}{2}\)
3 \(\frac{\lambda_{\mathrm{o}}}{2 \sqrt{2}}\)
4 \(\frac{\lambda_{\mathrm{o}}}{\sqrt{2}}\)
Dual nature of radiation and Matter

142466 If the kinetic energy of a moving particle is $\mathrm{E}$, then the de-Broglie wavelength is

1 $\lambda=\mathrm{h} \sqrt{2 \mathrm{mE}}$
2 $\lambda=\sqrt{\frac{2 \mathrm{mE}}{\mathrm{h}}}$
3 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
4 $\lambda=\frac{\mathrm{hE}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142415 The number of photons per second on an average emitted by the source of monochromatic light of wavelength $600 \mathrm{~nm}$, when it delivers the power of $3.3 \times 10^{-3} \mathrm{~W}$ will be $\left(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $10^{18}$
2 $10^{17}$
3 $10^{16}$
4 $10^{15}$
Dual nature of radiation and Matter

142422 An electron and photon are accelerated through the same potential difference. The ratio of the de-Broglie wavelength $\lambda_{P}$ to $\lambda_{e}$ is $\left[m_{e}=\right.$ mass of electron, $m_{p}=$ mass of proton]

1 $\left(\frac{m_{p}}{m_{e}}\right)^{\frac{1}{2}}$
2 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)^{\frac{1}{2}}$
3 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)$
4 $\left(\frac{m_{p}}{m_{e}}\right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142581 If \(\lambda_0\) is the de-Broglie wavelength for a proton accelerated through a potential difference of \(100 \mathrm{~V}\), the de-Broglie wavelength for \(\alpha\)-particle accelerated through the same potential difference is

1 \(2 \sqrt{2 \lambda_0}\)
2 \(\frac{\lambda_{\mathrm{o}}}{2}\)
3 \(\frac{\lambda_{\mathrm{o}}}{2 \sqrt{2}}\)
4 \(\frac{\lambda_{\mathrm{o}}}{\sqrt{2}}\)
Dual nature of radiation and Matter

142466 If the kinetic energy of a moving particle is $\mathrm{E}$, then the de-Broglie wavelength is

1 $\lambda=\mathrm{h} \sqrt{2 \mathrm{mE}}$
2 $\lambda=\sqrt{\frac{2 \mathrm{mE}}{\mathrm{h}}}$
3 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
4 $\lambda=\frac{\mathrm{hE}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142415 The number of photons per second on an average emitted by the source of monochromatic light of wavelength $600 \mathrm{~nm}$, when it delivers the power of $3.3 \times 10^{-3} \mathrm{~W}$ will be $\left(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $10^{18}$
2 $10^{17}$
3 $10^{16}$
4 $10^{15}$
Dual nature of radiation and Matter

142422 An electron and photon are accelerated through the same potential difference. The ratio of the de-Broglie wavelength $\lambda_{P}$ to $\lambda_{e}$ is $\left[m_{e}=\right.$ mass of electron, $m_{p}=$ mass of proton]

1 $\left(\frac{m_{p}}{m_{e}}\right)^{\frac{1}{2}}$
2 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)^{\frac{1}{2}}$
3 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)$
4 $\left(\frac{m_{p}}{m_{e}}\right)$
Dual nature of radiation and Matter

142581 If \(\lambda_0\) is the de-Broglie wavelength for a proton accelerated through a potential difference of \(100 \mathrm{~V}\), the de-Broglie wavelength for \(\alpha\)-particle accelerated through the same potential difference is

1 \(2 \sqrt{2 \lambda_0}\)
2 \(\frac{\lambda_{\mathrm{o}}}{2}\)
3 \(\frac{\lambda_{\mathrm{o}}}{2 \sqrt{2}}\)
4 \(\frac{\lambda_{\mathrm{o}}}{\sqrt{2}}\)
Dual nature of radiation and Matter

142466 If the kinetic energy of a moving particle is $\mathrm{E}$, then the de-Broglie wavelength is

1 $\lambda=\mathrm{h} \sqrt{2 \mathrm{mE}}$
2 $\lambda=\sqrt{\frac{2 \mathrm{mE}}{\mathrm{h}}}$
3 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
4 $\lambda=\frac{\mathrm{hE}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142415 The number of photons per second on an average emitted by the source of monochromatic light of wavelength $600 \mathrm{~nm}$, when it delivers the power of $3.3 \times 10^{-3} \mathrm{~W}$ will be $\left(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $10^{18}$
2 $10^{17}$
3 $10^{16}$
4 $10^{15}$
Dual nature of radiation and Matter

142422 An electron and photon are accelerated through the same potential difference. The ratio of the de-Broglie wavelength $\lambda_{P}$ to $\lambda_{e}$ is $\left[m_{e}=\right.$ mass of electron, $m_{p}=$ mass of proton]

1 $\left(\frac{m_{p}}{m_{e}}\right)^{\frac{1}{2}}$
2 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)^{\frac{1}{2}}$
3 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)$
4 $\left(\frac{m_{p}}{m_{e}}\right)$
Dual nature of radiation and Matter

142581 If \(\lambda_0\) is the de-Broglie wavelength for a proton accelerated through a potential difference of \(100 \mathrm{~V}\), the de-Broglie wavelength for \(\alpha\)-particle accelerated through the same potential difference is

1 \(2 \sqrt{2 \lambda_0}\)
2 \(\frac{\lambda_{\mathrm{o}}}{2}\)
3 \(\frac{\lambda_{\mathrm{o}}}{2 \sqrt{2}}\)
4 \(\frac{\lambda_{\mathrm{o}}}{\sqrt{2}}\)
Dual nature of radiation and Matter

142466 If the kinetic energy of a moving particle is $\mathrm{E}$, then the de-Broglie wavelength is

1 $\lambda=\mathrm{h} \sqrt{2 \mathrm{mE}}$
2 $\lambda=\sqrt{\frac{2 \mathrm{mE}}{\mathrm{h}}}$
3 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
4 $\lambda=\frac{\mathrm{hE}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142415 The number of photons per second on an average emitted by the source of monochromatic light of wavelength $600 \mathrm{~nm}$, when it delivers the power of $3.3 \times 10^{-3} \mathrm{~W}$ will be $\left(h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $10^{18}$
2 $10^{17}$
3 $10^{16}$
4 $10^{15}$
Dual nature of radiation and Matter

142422 An electron and photon are accelerated through the same potential difference. The ratio of the de-Broglie wavelength $\lambda_{P}$ to $\lambda_{e}$ is $\left[m_{e}=\right.$ mass of electron, $m_{p}=$ mass of proton]

1 $\left(\frac{m_{p}}{m_{e}}\right)^{\frac{1}{2}}$
2 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)^{\frac{1}{2}}$
3 $\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}\right)$
4 $\left(\frac{m_{p}}{m_{e}}\right)$