Wave Nature Of Light Of Matter (de-Broglie)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142405 An electron with speed $v$ and a photon with speed $\mathrm{c}$ have the same de-Broglie wavelength. If the kinetic energy and momentum of electron are $E_{e}$ and $P_{e}$ and that of photon are $E_{p h}$ and $P_{p h}$ respectively. Which of the following is correct?

1 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{v}}$
2 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{\mathrm{v}}{2 \mathrm{c}}$
3 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{V}}$
4 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{\mathrm{V}}{2 \mathrm{c}}$
Dual nature of radiation and Matter

142406 A proton, a neutron, an electron and an $\alpha$ particle have same energy. If $\lambda_{p}, \lambda_{n}, \lambda_{e}$ and $\lambda_{\alpha}$ are the de Broglie's wavelengths of proton, neutron, electron and $\alpha$ particle respectively, then choose the correct relation from the following :

1 $\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\mathrm{e}}>\lambda_{\alpha}$
2 $\lambda_{\alpha} \lt \lambda_{\mathrm{n}} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\alpha}$
4 $\lambda_{\mathrm{e}}=\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}=\lambda_{\alpha}$
Dual nature of radiation and Matter

142407 A particle of mass ' $m$ ' and charge ' $q$ ' accelerated by a potential difference $V_{0}$, has a de-Broglie wavelength ' $\lambda$ '. If another particle of mass ' $2 \mathrm{~m}$ ' and charge ' $2 \mathrm{q}$ ', accelerated by a potential difference $V$, has a de-Broglie wavelength $\frac{\lambda}{2}$, then $V$ is equal to

1 $\frac{V_{0}}{2}$
2 $2 \mathrm{~V}_{0}$
3 $\mathrm{V}_{0}$
4 $8 \mathrm{~V}_{0}$
Dual nature of radiation and Matter

142408 A particle of mass $4 \times 10^{-27} \mathrm{~kg}$ is moving with velocity $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$. The de- Broglie Wavelength associated with the particle is (Use h $=6.6 \times 10^{-34} \mathrm{Js}$ )

1 $5.5 \times 10^{-3} \AA$
2 $4.0 \times 10^{-2} \AA$
3 $4.5 \times 10^{-3} \AA$
4 $6.0 \times 10^{-2} \AA$
Dual nature of radiation and Matter

142405 An electron with speed $v$ and a photon with speed $\mathrm{c}$ have the same de-Broglie wavelength. If the kinetic energy and momentum of electron are $E_{e}$ and $P_{e}$ and that of photon are $E_{p h}$ and $P_{p h}$ respectively. Which of the following is correct?

1 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{v}}$
2 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{\mathrm{v}}{2 \mathrm{c}}$
3 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{V}}$
4 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{\mathrm{V}}{2 \mathrm{c}}$
Dual nature of radiation and Matter

142406 A proton, a neutron, an electron and an $\alpha$ particle have same energy. If $\lambda_{p}, \lambda_{n}, \lambda_{e}$ and $\lambda_{\alpha}$ are the de Broglie's wavelengths of proton, neutron, electron and $\alpha$ particle respectively, then choose the correct relation from the following :

1 $\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\mathrm{e}}>\lambda_{\alpha}$
2 $\lambda_{\alpha} \lt \lambda_{\mathrm{n}} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\alpha}$
4 $\lambda_{\mathrm{e}}=\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}=\lambda_{\alpha}$
Dual nature of radiation and Matter

142407 A particle of mass ' $m$ ' and charge ' $q$ ' accelerated by a potential difference $V_{0}$, has a de-Broglie wavelength ' $\lambda$ '. If another particle of mass ' $2 \mathrm{~m}$ ' and charge ' $2 \mathrm{q}$ ', accelerated by a potential difference $V$, has a de-Broglie wavelength $\frac{\lambda}{2}$, then $V$ is equal to

1 $\frac{V_{0}}{2}$
2 $2 \mathrm{~V}_{0}$
3 $\mathrm{V}_{0}$
4 $8 \mathrm{~V}_{0}$
Dual nature of radiation and Matter

142408 A particle of mass $4 \times 10^{-27} \mathrm{~kg}$ is moving with velocity $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$. The de- Broglie Wavelength associated with the particle is (Use h $=6.6 \times 10^{-34} \mathrm{Js}$ )

1 $5.5 \times 10^{-3} \AA$
2 $4.0 \times 10^{-2} \AA$
3 $4.5 \times 10^{-3} \AA$
4 $6.0 \times 10^{-2} \AA$
Dual nature of radiation and Matter

142405 An electron with speed $v$ and a photon with speed $\mathrm{c}$ have the same de-Broglie wavelength. If the kinetic energy and momentum of electron are $E_{e}$ and $P_{e}$ and that of photon are $E_{p h}$ and $P_{p h}$ respectively. Which of the following is correct?

1 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{v}}$
2 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{\mathrm{v}}{2 \mathrm{c}}$
3 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{V}}$
4 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{\mathrm{V}}{2 \mathrm{c}}$
Dual nature of radiation and Matter

142406 A proton, a neutron, an electron and an $\alpha$ particle have same energy. If $\lambda_{p}, \lambda_{n}, \lambda_{e}$ and $\lambda_{\alpha}$ are the de Broglie's wavelengths of proton, neutron, electron and $\alpha$ particle respectively, then choose the correct relation from the following :

1 $\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\mathrm{e}}>\lambda_{\alpha}$
2 $\lambda_{\alpha} \lt \lambda_{\mathrm{n}} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\alpha}$
4 $\lambda_{\mathrm{e}}=\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}=\lambda_{\alpha}$
Dual nature of radiation and Matter

142407 A particle of mass ' $m$ ' and charge ' $q$ ' accelerated by a potential difference $V_{0}$, has a de-Broglie wavelength ' $\lambda$ '. If another particle of mass ' $2 \mathrm{~m}$ ' and charge ' $2 \mathrm{q}$ ', accelerated by a potential difference $V$, has a de-Broglie wavelength $\frac{\lambda}{2}$, then $V$ is equal to

1 $\frac{V_{0}}{2}$
2 $2 \mathrm{~V}_{0}$
3 $\mathrm{V}_{0}$
4 $8 \mathrm{~V}_{0}$
Dual nature of radiation and Matter

142408 A particle of mass $4 \times 10^{-27} \mathrm{~kg}$ is moving with velocity $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$. The de- Broglie Wavelength associated with the particle is (Use h $=6.6 \times 10^{-34} \mathrm{Js}$ )

1 $5.5 \times 10^{-3} \AA$
2 $4.0 \times 10^{-2} \AA$
3 $4.5 \times 10^{-3} \AA$
4 $6.0 \times 10^{-2} \AA$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142405 An electron with speed $v$ and a photon with speed $\mathrm{c}$ have the same de-Broglie wavelength. If the kinetic energy and momentum of electron are $E_{e}$ and $P_{e}$ and that of photon are $E_{p h}$ and $P_{p h}$ respectively. Which of the following is correct?

1 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{v}}$
2 $\frac{\mathrm{E}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{ph}}}=\frac{\mathrm{v}}{2 \mathrm{c}}$
3 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{2 \mathrm{c}}{\mathrm{V}}$
4 $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{ph}}}=\frac{\mathrm{V}}{2 \mathrm{c}}$
Dual nature of radiation and Matter

142406 A proton, a neutron, an electron and an $\alpha$ particle have same energy. If $\lambda_{p}, \lambda_{n}, \lambda_{e}$ and $\lambda_{\alpha}$ are the de Broglie's wavelengths of proton, neutron, electron and $\alpha$ particle respectively, then choose the correct relation from the following :

1 $\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\mathrm{e}}>\lambda_{\alpha}$
2 $\lambda_{\alpha} \lt \lambda_{\mathrm{n}} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}>\lambda_{\alpha}$
4 $\lambda_{\mathrm{e}}=\lambda_{\mathrm{p}}=\lambda_{\mathrm{n}}=\lambda_{\alpha}$
Dual nature of radiation and Matter

142407 A particle of mass ' $m$ ' and charge ' $q$ ' accelerated by a potential difference $V_{0}$, has a de-Broglie wavelength ' $\lambda$ '. If another particle of mass ' $2 \mathrm{~m}$ ' and charge ' $2 \mathrm{q}$ ', accelerated by a potential difference $V$, has a de-Broglie wavelength $\frac{\lambda}{2}$, then $V$ is equal to

1 $\frac{V_{0}}{2}$
2 $2 \mathrm{~V}_{0}$
3 $\mathrm{V}_{0}$
4 $8 \mathrm{~V}_{0}$
Dual nature of radiation and Matter

142408 A particle of mass $4 \times 10^{-27} \mathrm{~kg}$ is moving with velocity $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$. The de- Broglie Wavelength associated with the particle is (Use h $=6.6 \times 10^{-34} \mathrm{Js}$ )

1 $5.5 \times 10^{-3} \AA$
2 $4.0 \times 10^{-2} \AA$
3 $4.5 \times 10^{-3} \AA$
4 $6.0 \times 10^{-2} \AA$