Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142549 The de Broglie wavelength of a ball of mass 120 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$ is

1 $3.5 \times 10^{-34} \mathrm{~m}$
2 $2.8 \times 10^{-34} \mathrm{~m}$
3 $1.2 \times 10^{-34} \mathrm{~m}$
4 $2.1 \times 10^{-34} \mathrm{~m}$
Dual nature of radiation and Matter

142550 Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.

1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Dual nature of radiation and Matter

142551 When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?

1 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\mathrm{h}=\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
3 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\mathrm{h}=\frac{\sqrt{\mathrm{k}_{1}^{2}-\mathrm{k}_{2}^{2}}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142553 Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.

1 $0.01 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
2 $0.02 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
3 $0.03 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
4 $0.04 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
Dual nature of radiation and Matter

142549 The de Broglie wavelength of a ball of mass 120 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$ is

1 $3.5 \times 10^{-34} \mathrm{~m}$
2 $2.8 \times 10^{-34} \mathrm{~m}$
3 $1.2 \times 10^{-34} \mathrm{~m}$
4 $2.1 \times 10^{-34} \mathrm{~m}$
Dual nature of radiation and Matter

142550 Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.

1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Dual nature of radiation and Matter

142551 When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?

1 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\mathrm{h}=\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
3 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\mathrm{h}=\frac{\sqrt{\mathrm{k}_{1}^{2}-\mathrm{k}_{2}^{2}}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142553 Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.

1 $0.01 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
2 $0.02 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
3 $0.03 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
4 $0.04 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
Dual nature of radiation and Matter

142549 The de Broglie wavelength of a ball of mass 120 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$ is

1 $3.5 \times 10^{-34} \mathrm{~m}$
2 $2.8 \times 10^{-34} \mathrm{~m}$
3 $1.2 \times 10^{-34} \mathrm{~m}$
4 $2.1 \times 10^{-34} \mathrm{~m}$
Dual nature of radiation and Matter

142550 Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.

1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Dual nature of radiation and Matter

142551 When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?

1 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\mathrm{h}=\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
3 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\mathrm{h}=\frac{\sqrt{\mathrm{k}_{1}^{2}-\mathrm{k}_{2}^{2}}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142553 Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.

1 $0.01 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
2 $0.02 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
3 $0.03 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
4 $0.04 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142549 The de Broglie wavelength of a ball of mass 120 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$ is

1 $3.5 \times 10^{-34} \mathrm{~m}$
2 $2.8 \times 10^{-34} \mathrm{~m}$
3 $1.2 \times 10^{-34} \mathrm{~m}$
4 $2.1 \times 10^{-34} \mathrm{~m}$
Dual nature of radiation and Matter

142550 Find the de Broglie wavelength for a $100 \mathrm{gm}$ bullet moving at $900 \mathrm{~m} / \mathrm{s}$.

1 $3.7 \times 10^{-35} \mathrm{~m}$
2 $7.4 \times 10^{-36} \mathrm{~m}$
3 $7.8 \times 10^{-37} \mathrm{~m}$
4 $8.2 \times 10^{-39} \mathrm{~m}$
Dual nature of radiation and Matter

142551 When two radiations of wavelengths $\lambda_{2}$ fall on a metallic surface, they produce photoelectrons with maximum energies $k_{1}$ and $k_{2}$, respectively. Which of the following relations is used to estimate the Planck constant?

1 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\mathrm{h}=\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
3 $\mathrm{h}=\frac{\mathrm{k}_{1}-\mathrm{k}_{2}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\mathrm{h}=\frac{\sqrt{\mathrm{k}_{1}^{2}-\mathrm{k}_{2}^{2}}}{\mathrm{c}} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142553 Calculate the linear momentum of a $3 \mathrm{MeV}$ photon.

1 $0.01 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
2 $0.02 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
3 $0.03 \mathrm{eV} . \mathrm{s} / \mathrm{m}$
4 $0.04 \mathrm{eV} . \mathrm{s} / \mathrm{m}$