Particle Nature Of Light
Dual nature of radiation and Matter

142385 The de-Broglie wavelength of a free electron with kinetic energy $E$ is $\lambda$. If the kinetic energy of the electron is doubled, the de-Broglie wavelength is

1 $\frac{\lambda}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{\lambda}{2}$
4 2
Dual nature of radiation and Matter

142359 The energy of a Photon of a monochromatic light of wavelength $621 \mathrm{~nm}$ equals the band gap of a semiconducting material. The minimum energy required to create an electron hole pair is [Use hc $=1242 \mathrm{eV} . \mathrm{nm}$, with $\mathrm{h}=$ Planck's constant and $c=$ velocity of light]

1 $1.2 \mathrm{eV}$
2 $2 \mathrm{eV}$
3 $1.5 \mathrm{eV}$
4 $1.75 \mathrm{eV}$
Dual nature of radiation and Matter

142361 Photons of $5.5 \mathrm{e} \mathrm{V}$ energy fall on the surface of the metal emitting photoelectrons of maximum kinetic energy $4.0 \mathrm{e} \mathrm{V}$. The stopping voltage required for these electrons is

1 $5.5 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $9.5 \mathrm{~V}$
4 $4.0 \mathrm{~V}$
Dual nature of radiation and Matter

142368 The energy of a photon of light of wavelength $450 \mathrm{~nm}$ is

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $2.5 \times 10^{-19} \mathrm{~J}$
3 $1.25 \times 10^{-17} \mathrm{~J}$
4 $2.5 \times 10^{-17} \mathrm{~J}$
Dual nature of radiation and Matter

142369 If the energy of a photon is $10 \mathrm{eV}$, then its momentum is

1 $5.33 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $5.33 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $5.33 \times 10^{-29} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $5.33 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142385 The de-Broglie wavelength of a free electron with kinetic energy $E$ is $\lambda$. If the kinetic energy of the electron is doubled, the de-Broglie wavelength is

1 $\frac{\lambda}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{\lambda}{2}$
4 2
Dual nature of radiation and Matter

142359 The energy of a Photon of a monochromatic light of wavelength $621 \mathrm{~nm}$ equals the band gap of a semiconducting material. The minimum energy required to create an electron hole pair is [Use hc $=1242 \mathrm{eV} . \mathrm{nm}$, with $\mathrm{h}=$ Planck's constant and $c=$ velocity of light]

1 $1.2 \mathrm{eV}$
2 $2 \mathrm{eV}$
3 $1.5 \mathrm{eV}$
4 $1.75 \mathrm{eV}$
Dual nature of radiation and Matter

142361 Photons of $5.5 \mathrm{e} \mathrm{V}$ energy fall on the surface of the metal emitting photoelectrons of maximum kinetic energy $4.0 \mathrm{e} \mathrm{V}$. The stopping voltage required for these electrons is

1 $5.5 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $9.5 \mathrm{~V}$
4 $4.0 \mathrm{~V}$
Dual nature of radiation and Matter

142368 The energy of a photon of light of wavelength $450 \mathrm{~nm}$ is

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $2.5 \times 10^{-19} \mathrm{~J}$
3 $1.25 \times 10^{-17} \mathrm{~J}$
4 $2.5 \times 10^{-17} \mathrm{~J}$
Dual nature of radiation and Matter

142369 If the energy of a photon is $10 \mathrm{eV}$, then its momentum is

1 $5.33 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $5.33 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $5.33 \times 10^{-29} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $5.33 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142385 The de-Broglie wavelength of a free electron with kinetic energy $E$ is $\lambda$. If the kinetic energy of the electron is doubled, the de-Broglie wavelength is

1 $\frac{\lambda}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{\lambda}{2}$
4 2
Dual nature of radiation and Matter

142359 The energy of a Photon of a monochromatic light of wavelength $621 \mathrm{~nm}$ equals the band gap of a semiconducting material. The minimum energy required to create an electron hole pair is [Use hc $=1242 \mathrm{eV} . \mathrm{nm}$, with $\mathrm{h}=$ Planck's constant and $c=$ velocity of light]

1 $1.2 \mathrm{eV}$
2 $2 \mathrm{eV}$
3 $1.5 \mathrm{eV}$
4 $1.75 \mathrm{eV}$
Dual nature of radiation and Matter

142361 Photons of $5.5 \mathrm{e} \mathrm{V}$ energy fall on the surface of the metal emitting photoelectrons of maximum kinetic energy $4.0 \mathrm{e} \mathrm{V}$. The stopping voltage required for these electrons is

1 $5.5 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $9.5 \mathrm{~V}$
4 $4.0 \mathrm{~V}$
Dual nature of radiation and Matter

142368 The energy of a photon of light of wavelength $450 \mathrm{~nm}$ is

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $2.5 \times 10^{-19} \mathrm{~J}$
3 $1.25 \times 10^{-17} \mathrm{~J}$
4 $2.5 \times 10^{-17} \mathrm{~J}$
Dual nature of radiation and Matter

142369 If the energy of a photon is $10 \mathrm{eV}$, then its momentum is

1 $5.33 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $5.33 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $5.33 \times 10^{-29} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $5.33 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142385 The de-Broglie wavelength of a free electron with kinetic energy $E$ is $\lambda$. If the kinetic energy of the electron is doubled, the de-Broglie wavelength is

1 $\frac{\lambda}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{\lambda}{2}$
4 2
Dual nature of radiation and Matter

142359 The energy of a Photon of a monochromatic light of wavelength $621 \mathrm{~nm}$ equals the band gap of a semiconducting material. The minimum energy required to create an electron hole pair is [Use hc $=1242 \mathrm{eV} . \mathrm{nm}$, with $\mathrm{h}=$ Planck's constant and $c=$ velocity of light]

1 $1.2 \mathrm{eV}$
2 $2 \mathrm{eV}$
3 $1.5 \mathrm{eV}$
4 $1.75 \mathrm{eV}$
Dual nature of radiation and Matter

142361 Photons of $5.5 \mathrm{e} \mathrm{V}$ energy fall on the surface of the metal emitting photoelectrons of maximum kinetic energy $4.0 \mathrm{e} \mathrm{V}$. The stopping voltage required for these electrons is

1 $5.5 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $9.5 \mathrm{~V}$
4 $4.0 \mathrm{~V}$
Dual nature of radiation and Matter

142368 The energy of a photon of light of wavelength $450 \mathrm{~nm}$ is

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $2.5 \times 10^{-19} \mathrm{~J}$
3 $1.25 \times 10^{-17} \mathrm{~J}$
4 $2.5 \times 10^{-17} \mathrm{~J}$
Dual nature of radiation and Matter

142369 If the energy of a photon is $10 \mathrm{eV}$, then its momentum is

1 $5.33 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $5.33 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $5.33 \times 10^{-29} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $5.33 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142385 The de-Broglie wavelength of a free electron with kinetic energy $E$ is $\lambda$. If the kinetic energy of the electron is doubled, the de-Broglie wavelength is

1 $\frac{\lambda}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{\lambda}{2}$
4 2
Dual nature of radiation and Matter

142359 The energy of a Photon of a monochromatic light of wavelength $621 \mathrm{~nm}$ equals the band gap of a semiconducting material. The minimum energy required to create an electron hole pair is [Use hc $=1242 \mathrm{eV} . \mathrm{nm}$, with $\mathrm{h}=$ Planck's constant and $c=$ velocity of light]

1 $1.2 \mathrm{eV}$
2 $2 \mathrm{eV}$
3 $1.5 \mathrm{eV}$
4 $1.75 \mathrm{eV}$
Dual nature of radiation and Matter

142361 Photons of $5.5 \mathrm{e} \mathrm{V}$ energy fall on the surface of the metal emitting photoelectrons of maximum kinetic energy $4.0 \mathrm{e} \mathrm{V}$. The stopping voltage required for these electrons is

1 $5.5 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $9.5 \mathrm{~V}$
4 $4.0 \mathrm{~V}$
Dual nature of radiation and Matter

142368 The energy of a photon of light of wavelength $450 \mathrm{~nm}$ is

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $2.5 \times 10^{-19} \mathrm{~J}$
3 $1.25 \times 10^{-17} \mathrm{~J}$
4 $2.5 \times 10^{-17} \mathrm{~J}$
Dual nature of radiation and Matter

142369 If the energy of a photon is $10 \mathrm{eV}$, then its momentum is

1 $5.33 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $5.33 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $5.33 \times 10^{-29} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $5.33 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$