142273
A 15.0eV photon collides with a ionizes a hydrogen atom. If the atom was originally in the ground state (ionization potential = 13.6eV), what is the kinetic energy of the ejected electron?
1 $1.4 \mathrm{eV}$
2 $13.6 \mathrm{eV}$
3 $15.0 \mathrm{eV}$
4 $28.6 \mathrm{eV}$
Explanation:
A Given, $\mathrm{E}=15 \mathrm{eV}, \mathrm{E}_{1}=13.6 \mathrm{eV}$, The kinetic energy of an ejected electron is- $\mathrm{K}=\mathrm{E}-\mathrm{E}_{\mathrm{i}}$ $\mathrm{K}=(15-13.6) \mathrm{eV}$ $\mathrm{K}=1.4 \mathrm{eV}$
AIIMS-2014
Dual nature of radiation and Matter
142276
The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is:
1 $1.6 \times 10^{-10} \mathrm{~J}$
2 $1.6 \times 10^{8} \mathrm{~J}$
3 $1.6 \times 10^{-17} \mathrm{~J}$
4 $1.6 \times 10^{-18} \mathrm{~J}$
Explanation:
C Given that, $\mathrm{V}=100$ volts Kinetic energy of an electron- $\mathrm{K} . \mathrm{E}=\mathrm{eV}$ $\mathrm{K} . \mathrm{E}=1.6 \times 10^{-19} \times 100$ $\mathrm{~K} . \mathrm{E}=1.6 \times 10^{-17} \mathrm{~J}$
AIIMS-1998
Dual nature of radiation and Matter
142283
If the wavelength is brought down from $6000 \AA$ to $4000 \AA$ in a photoelectric experiment then what will happen?
1 The work function of the metal will increase
2 The threshold frequency will decrease
3 No change will take place
4 Cut off voltage will increase
Explanation:
D Stopping potential or cut off voltage is given by $\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{hc}}{\mathrm{e}}\left(\frac{1}{\lambda}\right)-\frac{\phi_{\mathrm{o}}}{\mathrm{e}}$ Where, $\lambda$ is the wavelength of the incident photon. $\phi_{\mathrm{o}}=$ work function When the wavelength of the incident photon decreases then the stopping potential will increase.
VITEEE-2016
Dual nature of radiation and Matter
142287
The maximum kinetic energy of the photoelectrons depends only on :
1 potential
2 frequency
3 incident angle
4 pressure
Explanation:
B $\because$ Relation between kinetic energy and frequency is given by- Where, $\mathrm{KE}+\phi_{\mathrm{o}}=\mathrm{h} v$ $\mathrm{h}=\text { Planck's constant }$ $\phi_{\mathrm{o}}=$ Work function $v=$ Frequency of incident light Thus, from above equation we can say that the maximum kinetic energy of the photoelectrons depends only on frequency.
142273
A 15.0eV photon collides with a ionizes a hydrogen atom. If the atom was originally in the ground state (ionization potential = 13.6eV), what is the kinetic energy of the ejected electron?
1 $1.4 \mathrm{eV}$
2 $13.6 \mathrm{eV}$
3 $15.0 \mathrm{eV}$
4 $28.6 \mathrm{eV}$
Explanation:
A Given, $\mathrm{E}=15 \mathrm{eV}, \mathrm{E}_{1}=13.6 \mathrm{eV}$, The kinetic energy of an ejected electron is- $\mathrm{K}=\mathrm{E}-\mathrm{E}_{\mathrm{i}}$ $\mathrm{K}=(15-13.6) \mathrm{eV}$ $\mathrm{K}=1.4 \mathrm{eV}$
AIIMS-2014
Dual nature of radiation and Matter
142276
The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is:
1 $1.6 \times 10^{-10} \mathrm{~J}$
2 $1.6 \times 10^{8} \mathrm{~J}$
3 $1.6 \times 10^{-17} \mathrm{~J}$
4 $1.6 \times 10^{-18} \mathrm{~J}$
Explanation:
C Given that, $\mathrm{V}=100$ volts Kinetic energy of an electron- $\mathrm{K} . \mathrm{E}=\mathrm{eV}$ $\mathrm{K} . \mathrm{E}=1.6 \times 10^{-19} \times 100$ $\mathrm{~K} . \mathrm{E}=1.6 \times 10^{-17} \mathrm{~J}$
AIIMS-1998
Dual nature of radiation and Matter
142283
If the wavelength is brought down from $6000 \AA$ to $4000 \AA$ in a photoelectric experiment then what will happen?
1 The work function of the metal will increase
2 The threshold frequency will decrease
3 No change will take place
4 Cut off voltage will increase
Explanation:
D Stopping potential or cut off voltage is given by $\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{hc}}{\mathrm{e}}\left(\frac{1}{\lambda}\right)-\frac{\phi_{\mathrm{o}}}{\mathrm{e}}$ Where, $\lambda$ is the wavelength of the incident photon. $\phi_{\mathrm{o}}=$ work function When the wavelength of the incident photon decreases then the stopping potential will increase.
VITEEE-2016
Dual nature of radiation and Matter
142287
The maximum kinetic energy of the photoelectrons depends only on :
1 potential
2 frequency
3 incident angle
4 pressure
Explanation:
B $\because$ Relation between kinetic energy and frequency is given by- Where, $\mathrm{KE}+\phi_{\mathrm{o}}=\mathrm{h} v$ $\mathrm{h}=\text { Planck's constant }$ $\phi_{\mathrm{o}}=$ Work function $v=$ Frequency of incident light Thus, from above equation we can say that the maximum kinetic energy of the photoelectrons depends only on frequency.
142273
A 15.0eV photon collides with a ionizes a hydrogen atom. If the atom was originally in the ground state (ionization potential = 13.6eV), what is the kinetic energy of the ejected electron?
1 $1.4 \mathrm{eV}$
2 $13.6 \mathrm{eV}$
3 $15.0 \mathrm{eV}$
4 $28.6 \mathrm{eV}$
Explanation:
A Given, $\mathrm{E}=15 \mathrm{eV}, \mathrm{E}_{1}=13.6 \mathrm{eV}$, The kinetic energy of an ejected electron is- $\mathrm{K}=\mathrm{E}-\mathrm{E}_{\mathrm{i}}$ $\mathrm{K}=(15-13.6) \mathrm{eV}$ $\mathrm{K}=1.4 \mathrm{eV}$
AIIMS-2014
Dual nature of radiation and Matter
142276
The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is:
1 $1.6 \times 10^{-10} \mathrm{~J}$
2 $1.6 \times 10^{8} \mathrm{~J}$
3 $1.6 \times 10^{-17} \mathrm{~J}$
4 $1.6 \times 10^{-18} \mathrm{~J}$
Explanation:
C Given that, $\mathrm{V}=100$ volts Kinetic energy of an electron- $\mathrm{K} . \mathrm{E}=\mathrm{eV}$ $\mathrm{K} . \mathrm{E}=1.6 \times 10^{-19} \times 100$ $\mathrm{~K} . \mathrm{E}=1.6 \times 10^{-17} \mathrm{~J}$
AIIMS-1998
Dual nature of radiation and Matter
142283
If the wavelength is brought down from $6000 \AA$ to $4000 \AA$ in a photoelectric experiment then what will happen?
1 The work function of the metal will increase
2 The threshold frequency will decrease
3 No change will take place
4 Cut off voltage will increase
Explanation:
D Stopping potential or cut off voltage is given by $\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{hc}}{\mathrm{e}}\left(\frac{1}{\lambda}\right)-\frac{\phi_{\mathrm{o}}}{\mathrm{e}}$ Where, $\lambda$ is the wavelength of the incident photon. $\phi_{\mathrm{o}}=$ work function When the wavelength of the incident photon decreases then the stopping potential will increase.
VITEEE-2016
Dual nature of radiation and Matter
142287
The maximum kinetic energy of the photoelectrons depends only on :
1 potential
2 frequency
3 incident angle
4 pressure
Explanation:
B $\because$ Relation between kinetic energy and frequency is given by- Where, $\mathrm{KE}+\phi_{\mathrm{o}}=\mathrm{h} v$ $\mathrm{h}=\text { Planck's constant }$ $\phi_{\mathrm{o}}=$ Work function $v=$ Frequency of incident light Thus, from above equation we can say that the maximum kinetic energy of the photoelectrons depends only on frequency.
142273
A 15.0eV photon collides with a ionizes a hydrogen atom. If the atom was originally in the ground state (ionization potential = 13.6eV), what is the kinetic energy of the ejected electron?
1 $1.4 \mathrm{eV}$
2 $13.6 \mathrm{eV}$
3 $15.0 \mathrm{eV}$
4 $28.6 \mathrm{eV}$
Explanation:
A Given, $\mathrm{E}=15 \mathrm{eV}, \mathrm{E}_{1}=13.6 \mathrm{eV}$, The kinetic energy of an ejected electron is- $\mathrm{K}=\mathrm{E}-\mathrm{E}_{\mathrm{i}}$ $\mathrm{K}=(15-13.6) \mathrm{eV}$ $\mathrm{K}=1.4 \mathrm{eV}$
AIIMS-2014
Dual nature of radiation and Matter
142276
The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is:
1 $1.6 \times 10^{-10} \mathrm{~J}$
2 $1.6 \times 10^{8} \mathrm{~J}$
3 $1.6 \times 10^{-17} \mathrm{~J}$
4 $1.6 \times 10^{-18} \mathrm{~J}$
Explanation:
C Given that, $\mathrm{V}=100$ volts Kinetic energy of an electron- $\mathrm{K} . \mathrm{E}=\mathrm{eV}$ $\mathrm{K} . \mathrm{E}=1.6 \times 10^{-19} \times 100$ $\mathrm{~K} . \mathrm{E}=1.6 \times 10^{-17} \mathrm{~J}$
AIIMS-1998
Dual nature of radiation and Matter
142283
If the wavelength is brought down from $6000 \AA$ to $4000 \AA$ in a photoelectric experiment then what will happen?
1 The work function of the metal will increase
2 The threshold frequency will decrease
3 No change will take place
4 Cut off voltage will increase
Explanation:
D Stopping potential or cut off voltage is given by $\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{hc}}{\mathrm{e}}\left(\frac{1}{\lambda}\right)-\frac{\phi_{\mathrm{o}}}{\mathrm{e}}$ Where, $\lambda$ is the wavelength of the incident photon. $\phi_{\mathrm{o}}=$ work function When the wavelength of the incident photon decreases then the stopping potential will increase.
VITEEE-2016
Dual nature of radiation and Matter
142287
The maximum kinetic energy of the photoelectrons depends only on :
1 potential
2 frequency
3 incident angle
4 pressure
Explanation:
B $\because$ Relation between kinetic energy and frequency is given by- Where, $\mathrm{KE}+\phi_{\mathrm{o}}=\mathrm{h} v$ $\mathrm{h}=\text { Planck's constant }$ $\phi_{\mathrm{o}}=$ Work function $v=$ Frequency of incident light Thus, from above equation we can say that the maximum kinetic energy of the photoelectrons depends only on frequency.