Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142206 Out of the following graphs, between maximum kinetic energy (E) of emitted photoelectrons and intensity of incident light (I), which one is correct?

1 (D)
2 (C)
3 $(\mathrm{A})$
4 (B)
Dual nature of radiation and Matter

142207 When a photosensitive surface is irradiated by lights of wavelengths $\lambda_{1}$ and $\lambda_{2}$, kinetic energies of emitted photoelectrons are $E_{1}$ and $E_{2}$ respectively. The work function of the photosensitive surface is

1 $\frac{\lambda_{2} E_{1}+\lambda_{2} E_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\frac{\lambda_{2} \mathrm{E}_{2}-\lambda_{1} \mathrm{E}_{1}}{\lambda_{2}-\lambda_{1}}$
3 $\frac{\lambda_{1} \mathrm{E}_{1}+\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\frac{\lambda_{1} \mathrm{E}_{1}-\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142208 When wavelength of incident radiation on the metal surface is reduced from ' $\lambda_{1}$ ' to ' $\lambda_{2}$ ', the kinetic energy of emitted photoelectrons is tripled. The work function of the metal is $(\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ velocity of light)

1 $\frac{\mathrm{hc}}{2}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
2 $\mathrm{hc}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
3 $\operatorname{hc}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
4 $\frac{\mathrm{hc}}{2}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
Dual nature of radiation and Matter

142212 The threshold frequency of cesium is $5.16 \times$ $10^{14} \mathrm{~Hz}$. Then its work-function is

1 1.14
2 2.14
3 1.12
4 4.12
eV.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142206 Out of the following graphs, between maximum kinetic energy (E) of emitted photoelectrons and intensity of incident light (I), which one is correct?

1 (D)
2 (C)
3 $(\mathrm{A})$
4 (B)
Dual nature of radiation and Matter

142207 When a photosensitive surface is irradiated by lights of wavelengths $\lambda_{1}$ and $\lambda_{2}$, kinetic energies of emitted photoelectrons are $E_{1}$ and $E_{2}$ respectively. The work function of the photosensitive surface is

1 $\frac{\lambda_{2} E_{1}+\lambda_{2} E_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\frac{\lambda_{2} \mathrm{E}_{2}-\lambda_{1} \mathrm{E}_{1}}{\lambda_{2}-\lambda_{1}}$
3 $\frac{\lambda_{1} \mathrm{E}_{1}+\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\frac{\lambda_{1} \mathrm{E}_{1}-\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142208 When wavelength of incident radiation on the metal surface is reduced from ' $\lambda_{1}$ ' to ' $\lambda_{2}$ ', the kinetic energy of emitted photoelectrons is tripled. The work function of the metal is $(\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ velocity of light)

1 $\frac{\mathrm{hc}}{2}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
2 $\mathrm{hc}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
3 $\operatorname{hc}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
4 $\frac{\mathrm{hc}}{2}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
Dual nature of radiation and Matter

142212 The threshold frequency of cesium is $5.16 \times$ $10^{14} \mathrm{~Hz}$. Then its work-function is

1 1.14
2 2.14
3 1.12
4 4.12
eV.
Dual nature of radiation and Matter

142206 Out of the following graphs, between maximum kinetic energy (E) of emitted photoelectrons and intensity of incident light (I), which one is correct?

1 (D)
2 (C)
3 $(\mathrm{A})$
4 (B)
Dual nature of radiation and Matter

142207 When a photosensitive surface is irradiated by lights of wavelengths $\lambda_{1}$ and $\lambda_{2}$, kinetic energies of emitted photoelectrons are $E_{1}$ and $E_{2}$ respectively. The work function of the photosensitive surface is

1 $\frac{\lambda_{2} E_{1}+\lambda_{2} E_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\frac{\lambda_{2} \mathrm{E}_{2}-\lambda_{1} \mathrm{E}_{1}}{\lambda_{2}-\lambda_{1}}$
3 $\frac{\lambda_{1} \mathrm{E}_{1}+\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\frac{\lambda_{1} \mathrm{E}_{1}-\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142208 When wavelength of incident radiation on the metal surface is reduced from ' $\lambda_{1}$ ' to ' $\lambda_{2}$ ', the kinetic energy of emitted photoelectrons is tripled. The work function of the metal is $(\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ velocity of light)

1 $\frac{\mathrm{hc}}{2}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
2 $\mathrm{hc}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
3 $\operatorname{hc}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
4 $\frac{\mathrm{hc}}{2}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
Dual nature of radiation and Matter

142212 The threshold frequency of cesium is $5.16 \times$ $10^{14} \mathrm{~Hz}$. Then its work-function is

1 1.14
2 2.14
3 1.12
4 4.12
eV.
Dual nature of radiation and Matter

142206 Out of the following graphs, between maximum kinetic energy (E) of emitted photoelectrons and intensity of incident light (I), which one is correct?

1 (D)
2 (C)
3 $(\mathrm{A})$
4 (B)
Dual nature of radiation and Matter

142207 When a photosensitive surface is irradiated by lights of wavelengths $\lambda_{1}$ and $\lambda_{2}$, kinetic energies of emitted photoelectrons are $E_{1}$ and $E_{2}$ respectively. The work function of the photosensitive surface is

1 $\frac{\lambda_{2} E_{1}+\lambda_{2} E_{2}}{\lambda_{2}-\lambda_{1}}$
2 $\frac{\lambda_{2} \mathrm{E}_{2}-\lambda_{1} \mathrm{E}_{1}}{\lambda_{2}-\lambda_{1}}$
3 $\frac{\lambda_{1} \mathrm{E}_{1}+\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}+\lambda_{1}}$
4 $\frac{\lambda_{1} \mathrm{E}_{1}-\lambda_{2} \mathrm{E}_{2}}{\lambda_{2}-\lambda_{1}}$
Dual nature of radiation and Matter

142208 When wavelength of incident radiation on the metal surface is reduced from ' $\lambda_{1}$ ' to ' $\lambda_{2}$ ', the kinetic energy of emitted photoelectrons is tripled. The work function of the metal is $(\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ velocity of light)

1 $\frac{\mathrm{hc}}{2}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
2 $\mathrm{hc}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
3 $\operatorname{hc}\left[\frac{2 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
4 $\frac{\mathrm{hc}}{2}\left[\frac{3 \lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right]$
Dual nature of radiation and Matter

142212 The threshold frequency of cesium is $5.16 \times$ $10^{14} \mathrm{~Hz}$. Then its work-function is

1 1.14
2 2.14
3 1.12
4 4.12
eV.