Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142191 The following graph represents the variation of photocurrent with anode potential for a metal surface. Here, $I_{1}, I_{2}$ and $I_{3}$ represents intensities and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ represent frequency for curves 1,2 and 3 respectively, then :

1 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{2}$
2 $\gamma_{1}=\gamma_{3}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{3}$
3 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1}=\mathrm{I}_{2}$
4 $\gamma_{1}=\gamma_{2}$ and $I_{1}=I_{3}$
Dual nature of radiation and Matter

142192 The graph of stopping potential $\left(V_{s}\right)$ against frequency $(v)$ of incident radiation is plotted for two different metals ' $P$ ' and ' $Q$ ' as shown in the graph. $\phi_{\mathrm{p}}$ and $\phi_{\mathrm{Q}}$ are work functions of $\mathrm{P}$ and $Q$ respectively, then

1 $\phi_{\mathrm{P}}>\phi_{\mathrm{Q}}$
2 $\phi_{\mathrm{P}} \lt \phi_{\mathrm{Q}}$
3 $\phi_{\mathrm{P}}=\phi_{\mathrm{Q}}$
4 $\mathrm{v}_{0}^{\prime} \lt \mathrm{v}_{0}$
Dual nature of radiation and Matter

142193 Using Einstein's photoelectric equation, the graph between the K-E.(E) of photoelectrons emitted and the frequency of incident radiation $(v)$ is shown correctly in figure

1 (3)
2 (2)
3 (4)
4 (1)
Dual nature of radiation and Matter

142194 A metal surface having work function ' $w_{0}$ ' emits photoelectrons when photons of energy ' $E$ ' are incident on it. The electron enters the uniform magnetic field $(B)$ in perpendicular direction and moves in circular path of radius ' $r$ '. Then ' $r$ ' is equal to ( $m$ and e be the mass and charge of electron respectively).

1 $\frac{m\left(E-w_{0}\right)}{e B}$
2 $\frac{\sqrt{\mathrm{m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}}{\mathrm{eB}}$
3 $\frac{2 \mathrm{~m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}{\mathrm{eB}}$
4 $\frac{\sqrt{2 m\left(E-w_{0}\right)}}{e B}$
Dual nature of radiation and Matter

142191 The following graph represents the variation of photocurrent with anode potential for a metal surface. Here, $I_{1}, I_{2}$ and $I_{3}$ represents intensities and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ represent frequency for curves 1,2 and 3 respectively, then :

1 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{2}$
2 $\gamma_{1}=\gamma_{3}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{3}$
3 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1}=\mathrm{I}_{2}$
4 $\gamma_{1}=\gamma_{2}$ and $I_{1}=I_{3}$
Dual nature of radiation and Matter

142192 The graph of stopping potential $\left(V_{s}\right)$ against frequency $(v)$ of incident radiation is plotted for two different metals ' $P$ ' and ' $Q$ ' as shown in the graph. $\phi_{\mathrm{p}}$ and $\phi_{\mathrm{Q}}$ are work functions of $\mathrm{P}$ and $Q$ respectively, then

1 $\phi_{\mathrm{P}}>\phi_{\mathrm{Q}}$
2 $\phi_{\mathrm{P}} \lt \phi_{\mathrm{Q}}$
3 $\phi_{\mathrm{P}}=\phi_{\mathrm{Q}}$
4 $\mathrm{v}_{0}^{\prime} \lt \mathrm{v}_{0}$
Dual nature of radiation and Matter

142193 Using Einstein's photoelectric equation, the graph between the K-E.(E) of photoelectrons emitted and the frequency of incident radiation $(v)$ is shown correctly in figure

1 (3)
2 (2)
3 (4)
4 (1)
Dual nature of radiation and Matter

142194 A metal surface having work function ' $w_{0}$ ' emits photoelectrons when photons of energy ' $E$ ' are incident on it. The electron enters the uniform magnetic field $(B)$ in perpendicular direction and moves in circular path of radius ' $r$ '. Then ' $r$ ' is equal to ( $m$ and e be the mass and charge of electron respectively).

1 $\frac{m\left(E-w_{0}\right)}{e B}$
2 $\frac{\sqrt{\mathrm{m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}}{\mathrm{eB}}$
3 $\frac{2 \mathrm{~m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}{\mathrm{eB}}$
4 $\frac{\sqrt{2 m\left(E-w_{0}\right)}}{e B}$
Dual nature of radiation and Matter

142191 The following graph represents the variation of photocurrent with anode potential for a metal surface. Here, $I_{1}, I_{2}$ and $I_{3}$ represents intensities and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ represent frequency for curves 1,2 and 3 respectively, then :

1 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{2}$
2 $\gamma_{1}=\gamma_{3}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{3}$
3 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1}=\mathrm{I}_{2}$
4 $\gamma_{1}=\gamma_{2}$ and $I_{1}=I_{3}$
Dual nature of radiation and Matter

142192 The graph of stopping potential $\left(V_{s}\right)$ against frequency $(v)$ of incident radiation is plotted for two different metals ' $P$ ' and ' $Q$ ' as shown in the graph. $\phi_{\mathrm{p}}$ and $\phi_{\mathrm{Q}}$ are work functions of $\mathrm{P}$ and $Q$ respectively, then

1 $\phi_{\mathrm{P}}>\phi_{\mathrm{Q}}$
2 $\phi_{\mathrm{P}} \lt \phi_{\mathrm{Q}}$
3 $\phi_{\mathrm{P}}=\phi_{\mathrm{Q}}$
4 $\mathrm{v}_{0}^{\prime} \lt \mathrm{v}_{0}$
Dual nature of radiation and Matter

142193 Using Einstein's photoelectric equation, the graph between the K-E.(E) of photoelectrons emitted and the frequency of incident radiation $(v)$ is shown correctly in figure

1 (3)
2 (2)
3 (4)
4 (1)
Dual nature of radiation and Matter

142194 A metal surface having work function ' $w_{0}$ ' emits photoelectrons when photons of energy ' $E$ ' are incident on it. The electron enters the uniform magnetic field $(B)$ in perpendicular direction and moves in circular path of radius ' $r$ '. Then ' $r$ ' is equal to ( $m$ and e be the mass and charge of electron respectively).

1 $\frac{m\left(E-w_{0}\right)}{e B}$
2 $\frac{\sqrt{\mathrm{m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}}{\mathrm{eB}}$
3 $\frac{2 \mathrm{~m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}{\mathrm{eB}}$
4 $\frac{\sqrt{2 m\left(E-w_{0}\right)}}{e B}$
Dual nature of radiation and Matter

142191 The following graph represents the variation of photocurrent with anode potential for a metal surface. Here, $I_{1}, I_{2}$ and $I_{3}$ represents intensities and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ represent frequency for curves 1,2 and 3 respectively, then :

1 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{2}$
2 $\gamma_{1}=\gamma_{3}$ and $\mathrm{I}_{1} \neq \mathrm{I}_{3}$
3 $\gamma_{1}=\gamma_{2}$ and $\mathrm{I}_{1}=\mathrm{I}_{2}$
4 $\gamma_{1}=\gamma_{2}$ and $I_{1}=I_{3}$
Dual nature of radiation and Matter

142192 The graph of stopping potential $\left(V_{s}\right)$ against frequency $(v)$ of incident radiation is plotted for two different metals ' $P$ ' and ' $Q$ ' as shown in the graph. $\phi_{\mathrm{p}}$ and $\phi_{\mathrm{Q}}$ are work functions of $\mathrm{P}$ and $Q$ respectively, then

1 $\phi_{\mathrm{P}}>\phi_{\mathrm{Q}}$
2 $\phi_{\mathrm{P}} \lt \phi_{\mathrm{Q}}$
3 $\phi_{\mathrm{P}}=\phi_{\mathrm{Q}}$
4 $\mathrm{v}_{0}^{\prime} \lt \mathrm{v}_{0}$
Dual nature of radiation and Matter

142193 Using Einstein's photoelectric equation, the graph between the K-E.(E) of photoelectrons emitted and the frequency of incident radiation $(v)$ is shown correctly in figure

1 (3)
2 (2)
3 (4)
4 (1)
Dual nature of radiation and Matter

142194 A metal surface having work function ' $w_{0}$ ' emits photoelectrons when photons of energy ' $E$ ' are incident on it. The electron enters the uniform magnetic field $(B)$ in perpendicular direction and moves in circular path of radius ' $r$ '. Then ' $r$ ' is equal to ( $m$ and e be the mass and charge of electron respectively).

1 $\frac{m\left(E-w_{0}\right)}{e B}$
2 $\frac{\sqrt{\mathrm{m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}}{\mathrm{eB}}$
3 $\frac{2 \mathrm{~m}\left(\mathrm{E}-\mathrm{w}_{0}\right)}{\mathrm{eB}}$
4 $\frac{\sqrt{2 m\left(E-w_{0}\right)}}{e B}$