Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142094 For photoelectric emission from certain metal the cut-off frequency is $v$. If radiation of frequency $2 v$ impinges on the metal plate, the maximum possible velocity of the emitted electron will be ( $\mathrm{m}$ is the electron mass)

1 $\sqrt{\frac{\mathrm{h} v}{(2 \mathrm{~m})}}$
2 $\sqrt{\frac{h v}{\mathrm{~m}}}$
3 $\sqrt{\frac{2 \mathrm{~h} v}{\mathrm{~m}}}$
4 $2 \sqrt{\frac{\mathrm{h} v}{2 \mathrm{~m}_{\alpha}}}$
Dual nature of radiation and Matter

142095 The ratio of moment of an electron and an $\alpha$ particle which are accelerated from rest by a potential difference of $100 \mathrm{~V}$ is

1 1
2 $\sqrt{\frac{2 \mathrm{~m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
3 $\sqrt{\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
4 $\sqrt{\frac{m_{e}}{2 m_{\alpha}}}$
Dual nature of radiation and Matter

142097 An electron is accelerated from rest to potential
$V$. The final velocity of electron is

1 $\sqrt{\frac{\mathrm{eV}}{2 \mathrm{M}}}$
2 $\sqrt{\frac{4 \mathrm{eV}}{\mathrm{m}}}$
3 $\sqrt{\frac{\mathrm{eV}}{\mathrm{m}}}$
4 $\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}$
Dual nature of radiation and Matter

142098 Let the energy of an emitted photoelectron be $E$ and the wave- length of incident light be $\lambda$. What will be the change in $E$ if $\lambda$ is doubled?

1 $\mathrm{E}$
2 $\mathrm{E} / 2$
3 $2 \mathrm{E}$
4 $\mathrm{E} / 4$
Dual nature of radiation and Matter

142094 For photoelectric emission from certain metal the cut-off frequency is $v$. If radiation of frequency $2 v$ impinges on the metal plate, the maximum possible velocity of the emitted electron will be ( $\mathrm{m}$ is the electron mass)

1 $\sqrt{\frac{\mathrm{h} v}{(2 \mathrm{~m})}}$
2 $\sqrt{\frac{h v}{\mathrm{~m}}}$
3 $\sqrt{\frac{2 \mathrm{~h} v}{\mathrm{~m}}}$
4 $2 \sqrt{\frac{\mathrm{h} v}{2 \mathrm{~m}_{\alpha}}}$
Dual nature of radiation and Matter

142095 The ratio of moment of an electron and an $\alpha$ particle which are accelerated from rest by a potential difference of $100 \mathrm{~V}$ is

1 1
2 $\sqrt{\frac{2 \mathrm{~m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
3 $\sqrt{\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
4 $\sqrt{\frac{m_{e}}{2 m_{\alpha}}}$
Dual nature of radiation and Matter

142097 An electron is accelerated from rest to potential
$V$. The final velocity of electron is

1 $\sqrt{\frac{\mathrm{eV}}{2 \mathrm{M}}}$
2 $\sqrt{\frac{4 \mathrm{eV}}{\mathrm{m}}}$
3 $\sqrt{\frac{\mathrm{eV}}{\mathrm{m}}}$
4 $\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}$
Dual nature of radiation and Matter

142098 Let the energy of an emitted photoelectron be $E$ and the wave- length of incident light be $\lambda$. What will be the change in $E$ if $\lambda$ is doubled?

1 $\mathrm{E}$
2 $\mathrm{E} / 2$
3 $2 \mathrm{E}$
4 $\mathrm{E} / 4$
Dual nature of radiation and Matter

142094 For photoelectric emission from certain metal the cut-off frequency is $v$. If radiation of frequency $2 v$ impinges on the metal plate, the maximum possible velocity of the emitted electron will be ( $\mathrm{m}$ is the electron mass)

1 $\sqrt{\frac{\mathrm{h} v}{(2 \mathrm{~m})}}$
2 $\sqrt{\frac{h v}{\mathrm{~m}}}$
3 $\sqrt{\frac{2 \mathrm{~h} v}{\mathrm{~m}}}$
4 $2 \sqrt{\frac{\mathrm{h} v}{2 \mathrm{~m}_{\alpha}}}$
Dual nature of radiation and Matter

142095 The ratio of moment of an electron and an $\alpha$ particle which are accelerated from rest by a potential difference of $100 \mathrm{~V}$ is

1 1
2 $\sqrt{\frac{2 \mathrm{~m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
3 $\sqrt{\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
4 $\sqrt{\frac{m_{e}}{2 m_{\alpha}}}$
Dual nature of radiation and Matter

142097 An electron is accelerated from rest to potential
$V$. The final velocity of electron is

1 $\sqrt{\frac{\mathrm{eV}}{2 \mathrm{M}}}$
2 $\sqrt{\frac{4 \mathrm{eV}}{\mathrm{m}}}$
3 $\sqrt{\frac{\mathrm{eV}}{\mathrm{m}}}$
4 $\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}$
Dual nature of radiation and Matter

142098 Let the energy of an emitted photoelectron be $E$ and the wave- length of incident light be $\lambda$. What will be the change in $E$ if $\lambda$ is doubled?

1 $\mathrm{E}$
2 $\mathrm{E} / 2$
3 $2 \mathrm{E}$
4 $\mathrm{E} / 4$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142094 For photoelectric emission from certain metal the cut-off frequency is $v$. If radiation of frequency $2 v$ impinges on the metal plate, the maximum possible velocity of the emitted electron will be ( $\mathrm{m}$ is the electron mass)

1 $\sqrt{\frac{\mathrm{h} v}{(2 \mathrm{~m})}}$
2 $\sqrt{\frac{h v}{\mathrm{~m}}}$
3 $\sqrt{\frac{2 \mathrm{~h} v}{\mathrm{~m}}}$
4 $2 \sqrt{\frac{\mathrm{h} v}{2 \mathrm{~m}_{\alpha}}}$
Dual nature of radiation and Matter

142095 The ratio of moment of an electron and an $\alpha$ particle which are accelerated from rest by a potential difference of $100 \mathrm{~V}$ is

1 1
2 $\sqrt{\frac{2 \mathrm{~m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
3 $\sqrt{\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\alpha}}}$
4 $\sqrt{\frac{m_{e}}{2 m_{\alpha}}}$
Dual nature of radiation and Matter

142097 An electron is accelerated from rest to potential
$V$. The final velocity of electron is

1 $\sqrt{\frac{\mathrm{eV}}{2 \mathrm{M}}}$
2 $\sqrt{\frac{4 \mathrm{eV}}{\mathrm{m}}}$
3 $\sqrt{\frac{\mathrm{eV}}{\mathrm{m}}}$
4 $\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}$
Dual nature of radiation and Matter

142098 Let the energy of an emitted photoelectron be $E$ and the wave- length of incident light be $\lambda$. What will be the change in $E$ if $\lambda$ is doubled?

1 $\mathrm{E}$
2 $\mathrm{E} / 2$
3 $2 \mathrm{E}$
4 $\mathrm{E} / 4$