Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142054 The figures shows the variation of photocurrent I with anode potential $V$ for three differential radiations. Let $I_{a}, I_{b}$ and $I_{c}$ be the intensities and $f_{a}, f_{b}$ and $f_{c}$ be the frequencies for the cure $a, b$ and $c$ respectively. Then

1 $f_{a}=f_{b}$ and $I_{a} \neq I_{b}$
2 $\mathrm{f}_{\mathrm{a}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{c}}$
3 $f_{a}=f_{b}$ and $I_{a}=I_{b}$
4 $\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}$
Dual nature of radiation and Matter

142056 The threshold frequency for a certain metal is $v_{0}$. When a certain radiation of frequency $2 v_{0}$ is incident on this metal surface the maximum velocity of the photoelectrons emitted is $2 \times 10^{6}$ $\mathrm{ms}^{-1}$. If a radiation of frequency $3 v_{0}$ is incident on the same metal surface the maximum velocity of the photoelectrons emitted (in $\mathrm{ms}^{-1}$ ) is

1 $2 \times 10^{6}$
2 $2 \sqrt{2} \times 10^{6}$
3 $4 \sqrt{2} \times 10^{6}$
4 $4 \sqrt{3} \times 10^{6}$
Dual nature of radiation and Matter

142057 The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is (Given, $h=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8}$ $\mathbf{m s}^{-1}$ )

1 $\approx 6 \times 10^{5} \mathrm{~ms}^{-1}$
2 $\approx 6 \times 10^{6} \mathrm{~ms}^{-1}$
3 $\approx 61 \times 10^{3} \mathrm{~ms}^{-1}$
4 $\approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$
Dual nature of radiation and Matter

142059 When light of frequency $v_{1}$ is incident on a metal with work function $\mathrm{W}$ (where $h v_{1}>\mathrm{W}$ ), then photocurrent falls to zero at a stopping potential of $V_{1}$. If the frequency of light is increased to $v_{2}$, the stopping potential changes to $V_{2}$. Therefore, the charge of an electron is given by

1 $\frac{\mathrm{W}\left(v_{2}+v_{1}\right)}{v_{1} \mathrm{~V}_{2}+v_{2} \mathrm{~V}_{1}}$
2 $\frac{\mathrm{W}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)}{v_{1} \mathrm{~V}_{1}+\mathrm{v}_{2} \mathrm{~V}_{2}}$
3 $\frac{\mathrm{W}\left(v_{2}-v_{1}\right)}{v_{1} \mathrm{~V}_{2}-v_{2} \mathrm{~V}_{1}}$
4 $\frac{\mathrm{W}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)}{\mathrm{v}_{2} \mathrm{~V}_{2}-\mathrm{v}_{1} \mathrm{~V}_{1}}$
Dual nature of radiation and Matter

142054 The figures shows the variation of photocurrent I with anode potential $V$ for three differential radiations. Let $I_{a}, I_{b}$ and $I_{c}$ be the intensities and $f_{a}, f_{b}$ and $f_{c}$ be the frequencies for the cure $a, b$ and $c$ respectively. Then

1 $f_{a}=f_{b}$ and $I_{a} \neq I_{b}$
2 $\mathrm{f}_{\mathrm{a}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{c}}$
3 $f_{a}=f_{b}$ and $I_{a}=I_{b}$
4 $\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}$
Dual nature of radiation and Matter

142056 The threshold frequency for a certain metal is $v_{0}$. When a certain radiation of frequency $2 v_{0}$ is incident on this metal surface the maximum velocity of the photoelectrons emitted is $2 \times 10^{6}$ $\mathrm{ms}^{-1}$. If a radiation of frequency $3 v_{0}$ is incident on the same metal surface the maximum velocity of the photoelectrons emitted (in $\mathrm{ms}^{-1}$ ) is

1 $2 \times 10^{6}$
2 $2 \sqrt{2} \times 10^{6}$
3 $4 \sqrt{2} \times 10^{6}$
4 $4 \sqrt{3} \times 10^{6}$
Dual nature of radiation and Matter

142057 The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is (Given, $h=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8}$ $\mathbf{m s}^{-1}$ )

1 $\approx 6 \times 10^{5} \mathrm{~ms}^{-1}$
2 $\approx 6 \times 10^{6} \mathrm{~ms}^{-1}$
3 $\approx 61 \times 10^{3} \mathrm{~ms}^{-1}$
4 $\approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$
Dual nature of radiation and Matter

142059 When light of frequency $v_{1}$ is incident on a metal with work function $\mathrm{W}$ (where $h v_{1}>\mathrm{W}$ ), then photocurrent falls to zero at a stopping potential of $V_{1}$. If the frequency of light is increased to $v_{2}$, the stopping potential changes to $V_{2}$. Therefore, the charge of an electron is given by

1 $\frac{\mathrm{W}\left(v_{2}+v_{1}\right)}{v_{1} \mathrm{~V}_{2}+v_{2} \mathrm{~V}_{1}}$
2 $\frac{\mathrm{W}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)}{v_{1} \mathrm{~V}_{1}+\mathrm{v}_{2} \mathrm{~V}_{2}}$
3 $\frac{\mathrm{W}\left(v_{2}-v_{1}\right)}{v_{1} \mathrm{~V}_{2}-v_{2} \mathrm{~V}_{1}}$
4 $\frac{\mathrm{W}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)}{\mathrm{v}_{2} \mathrm{~V}_{2}-\mathrm{v}_{1} \mathrm{~V}_{1}}$
Dual nature of radiation and Matter

142054 The figures shows the variation of photocurrent I with anode potential $V$ for three differential radiations. Let $I_{a}, I_{b}$ and $I_{c}$ be the intensities and $f_{a}, f_{b}$ and $f_{c}$ be the frequencies for the cure $a, b$ and $c$ respectively. Then

1 $f_{a}=f_{b}$ and $I_{a} \neq I_{b}$
2 $\mathrm{f}_{\mathrm{a}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{c}}$
3 $f_{a}=f_{b}$ and $I_{a}=I_{b}$
4 $\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}$
Dual nature of radiation and Matter

142056 The threshold frequency for a certain metal is $v_{0}$. When a certain radiation of frequency $2 v_{0}$ is incident on this metal surface the maximum velocity of the photoelectrons emitted is $2 \times 10^{6}$ $\mathrm{ms}^{-1}$. If a radiation of frequency $3 v_{0}$ is incident on the same metal surface the maximum velocity of the photoelectrons emitted (in $\mathrm{ms}^{-1}$ ) is

1 $2 \times 10^{6}$
2 $2 \sqrt{2} \times 10^{6}$
3 $4 \sqrt{2} \times 10^{6}$
4 $4 \sqrt{3} \times 10^{6}$
Dual nature of radiation and Matter

142057 The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is (Given, $h=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8}$ $\mathbf{m s}^{-1}$ )

1 $\approx 6 \times 10^{5} \mathrm{~ms}^{-1}$
2 $\approx 6 \times 10^{6} \mathrm{~ms}^{-1}$
3 $\approx 61 \times 10^{3} \mathrm{~ms}^{-1}$
4 $\approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$
Dual nature of radiation and Matter

142059 When light of frequency $v_{1}$ is incident on a metal with work function $\mathrm{W}$ (where $h v_{1}>\mathrm{W}$ ), then photocurrent falls to zero at a stopping potential of $V_{1}$. If the frequency of light is increased to $v_{2}$, the stopping potential changes to $V_{2}$. Therefore, the charge of an electron is given by

1 $\frac{\mathrm{W}\left(v_{2}+v_{1}\right)}{v_{1} \mathrm{~V}_{2}+v_{2} \mathrm{~V}_{1}}$
2 $\frac{\mathrm{W}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)}{v_{1} \mathrm{~V}_{1}+\mathrm{v}_{2} \mathrm{~V}_{2}}$
3 $\frac{\mathrm{W}\left(v_{2}-v_{1}\right)}{v_{1} \mathrm{~V}_{2}-v_{2} \mathrm{~V}_{1}}$
4 $\frac{\mathrm{W}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)}{\mathrm{v}_{2} \mathrm{~V}_{2}-\mathrm{v}_{1} \mathrm{~V}_{1}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142054 The figures shows the variation of photocurrent I with anode potential $V$ for three differential radiations. Let $I_{a}, I_{b}$ and $I_{c}$ be the intensities and $f_{a}, f_{b}$ and $f_{c}$ be the frequencies for the cure $a, b$ and $c$ respectively. Then

1 $f_{a}=f_{b}$ and $I_{a} \neq I_{b}$
2 $\mathrm{f}_{\mathrm{a}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{c}}$
3 $f_{a}=f_{b}$ and $I_{a}=I_{b}$
4 $\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}}$ and $\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}$
Dual nature of radiation and Matter

142056 The threshold frequency for a certain metal is $v_{0}$. When a certain radiation of frequency $2 v_{0}$ is incident on this metal surface the maximum velocity of the photoelectrons emitted is $2 \times 10^{6}$ $\mathrm{ms}^{-1}$. If a radiation of frequency $3 v_{0}$ is incident on the same metal surface the maximum velocity of the photoelectrons emitted (in $\mathrm{ms}^{-1}$ ) is

1 $2 \times 10^{6}$
2 $2 \sqrt{2} \times 10^{6}$
3 $4 \sqrt{2} \times 10^{6}$
4 $4 \sqrt{3} \times 10^{6}$
Dual nature of radiation and Matter

142057 The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is (Given, $h=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8}$ $\mathbf{m s}^{-1}$ )

1 $\approx 6 \times 10^{5} \mathrm{~ms}^{-1}$
2 $\approx 6 \times 10^{6} \mathrm{~ms}^{-1}$
3 $\approx 61 \times 10^{3} \mathrm{~ms}^{-1}$
4 $\approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$
Dual nature of radiation and Matter

142059 When light of frequency $v_{1}$ is incident on a metal with work function $\mathrm{W}$ (where $h v_{1}>\mathrm{W}$ ), then photocurrent falls to zero at a stopping potential of $V_{1}$. If the frequency of light is increased to $v_{2}$, the stopping potential changes to $V_{2}$. Therefore, the charge of an electron is given by

1 $\frac{\mathrm{W}\left(v_{2}+v_{1}\right)}{v_{1} \mathrm{~V}_{2}+v_{2} \mathrm{~V}_{1}}$
2 $\frac{\mathrm{W}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)}{v_{1} \mathrm{~V}_{1}+\mathrm{v}_{2} \mathrm{~V}_{2}}$
3 $\frac{\mathrm{W}\left(v_{2}-v_{1}\right)}{v_{1} \mathrm{~V}_{2}-v_{2} \mathrm{~V}_{1}}$
4 $\frac{\mathrm{W}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)}{\mathrm{v}_{2} \mathrm{~V}_{2}-\mathrm{v}_{1} \mathrm{~V}_{1}}$