Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
Dual nature of radiation and Matter

142024 Let $v_{1}$ and $v_{2}$ be the maximum velocities of the emitted electrons when the surface of a metal is illuminated with light waves of energy $E_{1}=4$ $\mathrm{eV}$ and $\mathrm{E}_{2}=2.5 \mathrm{eV}$, respectively. If the work function of the metal is $2 \mathrm{eV}$, then the ratio $\frac{v_{1}}{v_{2}}$ is

1 1.6
2 4
3 2
4 0.5
Dual nature of radiation and Matter

142025 If $\lambda$ is the incident wavelength and $\lambda_{0}$ is the threshold wavelength for a metal surface, photoelectric effect takes place only, if

1 $\lambda \leq \lambda_{0}$
2 $\lambda \geq \lambda_{0}$
3 $\lambda \geq 2 \lambda_{0}$
4 None of these
Dual nature of radiation and Matter

142026 If ionizing energy of $\mathrm{H}$ atom is $13.6 \mathrm{eV}$, then the second ionizing energy of $\mathrm{He}$ should be:

1 $13.6 \mathrm{eV}$
2 $27.2 \mathrm{eV}$
3 $54.4 \mathrm{eV}$
4 Cannot be predicted
Dual nature of radiation and Matter

142028 An energy of $24.6 \mathrm{eV}$ is required to remove one of the electrons from a neutral helium atom. The energy in $\mathrm{eV}$ required to remove both the electrons from neutral helium atom is

1 34.2
2 49.2
3 51.8
4 79.0
Dual nature of radiation and Matter

142029 A monochromatic source of radiation is operating at $100 \mathrm{~W}$ power. The source emits 2 $\times 10^{20}$ photons per second. The wavelength of light will be $\left(\mathrm{h}=6.67 \times 10^{-34} \mathrm{Js}\right)$

1 $300 \mathrm{~nm}$
2 $400 \mathrm{~nm}$
3 $600 \mathrm{~nm}$
4 $500 \mathrm{~nm}$
Dual nature of radiation and Matter

142024 Let $v_{1}$ and $v_{2}$ be the maximum velocities of the emitted electrons when the surface of a metal is illuminated with light waves of energy $E_{1}=4$ $\mathrm{eV}$ and $\mathrm{E}_{2}=2.5 \mathrm{eV}$, respectively. If the work function of the metal is $2 \mathrm{eV}$, then the ratio $\frac{v_{1}}{v_{2}}$ is

1 1.6
2 4
3 2
4 0.5
Dual nature of radiation and Matter

142025 If $\lambda$ is the incident wavelength and $\lambda_{0}$ is the threshold wavelength for a metal surface, photoelectric effect takes place only, if

1 $\lambda \leq \lambda_{0}$
2 $\lambda \geq \lambda_{0}$
3 $\lambda \geq 2 \lambda_{0}$
4 None of these
Dual nature of radiation and Matter

142026 If ionizing energy of $\mathrm{H}$ atom is $13.6 \mathrm{eV}$, then the second ionizing energy of $\mathrm{He}$ should be:

1 $13.6 \mathrm{eV}$
2 $27.2 \mathrm{eV}$
3 $54.4 \mathrm{eV}$
4 Cannot be predicted
Dual nature of radiation and Matter

142028 An energy of $24.6 \mathrm{eV}$ is required to remove one of the electrons from a neutral helium atom. The energy in $\mathrm{eV}$ required to remove both the electrons from neutral helium atom is

1 34.2
2 49.2
3 51.8
4 79.0
Dual nature of radiation and Matter

142029 A monochromatic source of radiation is operating at $100 \mathrm{~W}$ power. The source emits 2 $\times 10^{20}$ photons per second. The wavelength of light will be $\left(\mathrm{h}=6.67 \times 10^{-34} \mathrm{Js}\right)$

1 $300 \mathrm{~nm}$
2 $400 \mathrm{~nm}$
3 $600 \mathrm{~nm}$
4 $500 \mathrm{~nm}$
Dual nature of radiation and Matter

142024 Let $v_{1}$ and $v_{2}$ be the maximum velocities of the emitted electrons when the surface of a metal is illuminated with light waves of energy $E_{1}=4$ $\mathrm{eV}$ and $\mathrm{E}_{2}=2.5 \mathrm{eV}$, respectively. If the work function of the metal is $2 \mathrm{eV}$, then the ratio $\frac{v_{1}}{v_{2}}$ is

1 1.6
2 4
3 2
4 0.5
Dual nature of radiation and Matter

142025 If $\lambda$ is the incident wavelength and $\lambda_{0}$ is the threshold wavelength for a metal surface, photoelectric effect takes place only, if

1 $\lambda \leq \lambda_{0}$
2 $\lambda \geq \lambda_{0}$
3 $\lambda \geq 2 \lambda_{0}$
4 None of these
Dual nature of radiation and Matter

142026 If ionizing energy of $\mathrm{H}$ atom is $13.6 \mathrm{eV}$, then the second ionizing energy of $\mathrm{He}$ should be:

1 $13.6 \mathrm{eV}$
2 $27.2 \mathrm{eV}$
3 $54.4 \mathrm{eV}$
4 Cannot be predicted
Dual nature of radiation and Matter

142028 An energy of $24.6 \mathrm{eV}$ is required to remove one of the electrons from a neutral helium atom. The energy in $\mathrm{eV}$ required to remove both the electrons from neutral helium atom is

1 34.2
2 49.2
3 51.8
4 79.0
Dual nature of radiation and Matter

142029 A monochromatic source of radiation is operating at $100 \mathrm{~W}$ power. The source emits 2 $\times 10^{20}$ photons per second. The wavelength of light will be $\left(\mathrm{h}=6.67 \times 10^{-34} \mathrm{Js}\right)$

1 $300 \mathrm{~nm}$
2 $400 \mathrm{~nm}$
3 $600 \mathrm{~nm}$
4 $500 \mathrm{~nm}$
Dual nature of radiation and Matter

142024 Let $v_{1}$ and $v_{2}$ be the maximum velocities of the emitted electrons when the surface of a metal is illuminated with light waves of energy $E_{1}=4$ $\mathrm{eV}$ and $\mathrm{E}_{2}=2.5 \mathrm{eV}$, respectively. If the work function of the metal is $2 \mathrm{eV}$, then the ratio $\frac{v_{1}}{v_{2}}$ is

1 1.6
2 4
3 2
4 0.5
Dual nature of radiation and Matter

142025 If $\lambda$ is the incident wavelength and $\lambda_{0}$ is the threshold wavelength for a metal surface, photoelectric effect takes place only, if

1 $\lambda \leq \lambda_{0}$
2 $\lambda \geq \lambda_{0}$
3 $\lambda \geq 2 \lambda_{0}$
4 None of these
Dual nature of radiation and Matter

142026 If ionizing energy of $\mathrm{H}$ atom is $13.6 \mathrm{eV}$, then the second ionizing energy of $\mathrm{He}$ should be:

1 $13.6 \mathrm{eV}$
2 $27.2 \mathrm{eV}$
3 $54.4 \mathrm{eV}$
4 Cannot be predicted
Dual nature of radiation and Matter

142028 An energy of $24.6 \mathrm{eV}$ is required to remove one of the electrons from a neutral helium atom. The energy in $\mathrm{eV}$ required to remove both the electrons from neutral helium atom is

1 34.2
2 49.2
3 51.8
4 79.0
Dual nature of radiation and Matter

142029 A monochromatic source of radiation is operating at $100 \mathrm{~W}$ power. The source emits 2 $\times 10^{20}$ photons per second. The wavelength of light will be $\left(\mathrm{h}=6.67 \times 10^{-34} \mathrm{Js}\right)$

1 $300 \mathrm{~nm}$
2 $400 \mathrm{~nm}$
3 $600 \mathrm{~nm}$
4 $500 \mathrm{~nm}$
Dual nature of radiation and Matter

142024 Let $v_{1}$ and $v_{2}$ be the maximum velocities of the emitted electrons when the surface of a metal is illuminated with light waves of energy $E_{1}=4$ $\mathrm{eV}$ and $\mathrm{E}_{2}=2.5 \mathrm{eV}$, respectively. If the work function of the metal is $2 \mathrm{eV}$, then the ratio $\frac{v_{1}}{v_{2}}$ is

1 1.6
2 4
3 2
4 0.5
Dual nature of radiation and Matter

142025 If $\lambda$ is the incident wavelength and $\lambda_{0}$ is the threshold wavelength for a metal surface, photoelectric effect takes place only, if

1 $\lambda \leq \lambda_{0}$
2 $\lambda \geq \lambda_{0}$
3 $\lambda \geq 2 \lambda_{0}$
4 None of these
Dual nature of radiation and Matter

142026 If ionizing energy of $\mathrm{H}$ atom is $13.6 \mathrm{eV}$, then the second ionizing energy of $\mathrm{He}$ should be:

1 $13.6 \mathrm{eV}$
2 $27.2 \mathrm{eV}$
3 $54.4 \mathrm{eV}$
4 Cannot be predicted
Dual nature of radiation and Matter

142028 An energy of $24.6 \mathrm{eV}$ is required to remove one of the electrons from a neutral helium atom. The energy in $\mathrm{eV}$ required to remove both the electrons from neutral helium atom is

1 34.2
2 49.2
3 51.8
4 79.0
Dual nature of radiation and Matter

142029 A monochromatic source of radiation is operating at $100 \mathrm{~W}$ power. The source emits 2 $\times 10^{20}$ photons per second. The wavelength of light will be $\left(\mathrm{h}=6.67 \times 10^{-34} \mathrm{Js}\right)$

1 $300 \mathrm{~nm}$
2 $400 \mathrm{~nm}$
3 $600 \mathrm{~nm}$
4 $500 \mathrm{~nm}$