Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
Dual nature of radiation and Matter

141988 The value of Plank's constant, if the slope of the graph of stopping potential vs frequency of incident light is $4 \times 10^{-15} \mathrm{Vs}$ is

1 $6.0 \times 120^{-34} \mathrm{Js}$
2 $6.2 \times 10^{-34} \mathrm{Js}$
3 $6.4 \times 10^{-34} \mathrm{Js}$
4 $6.6 \times 10^{-34} \mathrm{Js}$
Dual nature of radiation and Matter

141989 Light strikes a metal surface causing photoelectric emission. The wavelength of incident light is $248 \mathrm{~nm}$. If the stopping potential for the ejected electrons is $2.8 \mathrm{eV}$, then the work function of the metal is (Take he $=1240 \mathrm{eV} . \mathrm{nm}$ )

1 $5.2 \mathrm{eV}$
2 $4.4 \mathrm{eV}$
3 $3.8 \mathrm{eV}$
4 $2.2 \mathrm{eV}$
Dual nature of radiation and Matter

141991 In a photo electric experiment, the wavelength of the light incident on the metal is changed from $200 \mathrm{~nm}$ to $400 \mathrm{~nm}$. The decrease in the stopping potential is close to
[Use hc $=1240 \mathrm{eV}$-nm where $\mathrm{h}=$ Planck's constant and $\mathbf{c}$ is velocity of light]

1 $3.1 \mathrm{~V}$
2 $2.8 \mathrm{~V}$
3 $4.2 \mathrm{~V}$
4 $1.2 \mathrm{~V}$
Dual nature of radiation and Matter

141992 When monochromatic light falls on a photosensitive metal, an electron is emitted with maximum velocity $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Find the stopping potential.
[charge of electron $=1.6 \times 10^{-19} \mathrm{C}$, mass of electron $\left.=9 \times 10^{-31} \mathrm{~kg}\right]$

1 $7.2 \mathrm{~V}$
2 $14.4 \mathrm{~V}$
3 $21.6 \mathrm{~V}$
4 $28.8 \mathrm{~V}$
Dual nature of radiation and Matter

141993 In a photoelectric effect, the maximum energy of the photoelectron is attained with exposure of $2000 \mathrm{~A}$ light. If the maximum kinetic energy of the photoelectron is $3 \mathrm{eV}$, the threshold wavelength will be
(use hc $=1240 \mathrm{ev} . \mathrm{nm}$ )

1 $387.5 \mathrm{~nm}$
2 $402.5 \mathrm{~nm}$
3 $339.5 \mathrm{~nm}$
4 $445.5 \mathrm{~nm}$
Dual nature of radiation and Matter

141988 The value of Plank's constant, if the slope of the graph of stopping potential vs frequency of incident light is $4 \times 10^{-15} \mathrm{Vs}$ is

1 $6.0 \times 120^{-34} \mathrm{Js}$
2 $6.2 \times 10^{-34} \mathrm{Js}$
3 $6.4 \times 10^{-34} \mathrm{Js}$
4 $6.6 \times 10^{-34} \mathrm{Js}$
Dual nature of radiation and Matter

141989 Light strikes a metal surface causing photoelectric emission. The wavelength of incident light is $248 \mathrm{~nm}$. If the stopping potential for the ejected electrons is $2.8 \mathrm{eV}$, then the work function of the metal is (Take he $=1240 \mathrm{eV} . \mathrm{nm}$ )

1 $5.2 \mathrm{eV}$
2 $4.4 \mathrm{eV}$
3 $3.8 \mathrm{eV}$
4 $2.2 \mathrm{eV}$
Dual nature of radiation and Matter

141991 In a photo electric experiment, the wavelength of the light incident on the metal is changed from $200 \mathrm{~nm}$ to $400 \mathrm{~nm}$. The decrease in the stopping potential is close to
[Use hc $=1240 \mathrm{eV}$-nm where $\mathrm{h}=$ Planck's constant and $\mathbf{c}$ is velocity of light]

1 $3.1 \mathrm{~V}$
2 $2.8 \mathrm{~V}$
3 $4.2 \mathrm{~V}$
4 $1.2 \mathrm{~V}$
Dual nature of radiation and Matter

141992 When monochromatic light falls on a photosensitive metal, an electron is emitted with maximum velocity $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Find the stopping potential.
[charge of electron $=1.6 \times 10^{-19} \mathrm{C}$, mass of electron $\left.=9 \times 10^{-31} \mathrm{~kg}\right]$

1 $7.2 \mathrm{~V}$
2 $14.4 \mathrm{~V}$
3 $21.6 \mathrm{~V}$
4 $28.8 \mathrm{~V}$
Dual nature of radiation and Matter

141993 In a photoelectric effect, the maximum energy of the photoelectron is attained with exposure of $2000 \mathrm{~A}$ light. If the maximum kinetic energy of the photoelectron is $3 \mathrm{eV}$, the threshold wavelength will be
(use hc $=1240 \mathrm{ev} . \mathrm{nm}$ )

1 $387.5 \mathrm{~nm}$
2 $402.5 \mathrm{~nm}$
3 $339.5 \mathrm{~nm}$
4 $445.5 \mathrm{~nm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

141988 The value of Plank's constant, if the slope of the graph of stopping potential vs frequency of incident light is $4 \times 10^{-15} \mathrm{Vs}$ is

1 $6.0 \times 120^{-34} \mathrm{Js}$
2 $6.2 \times 10^{-34} \mathrm{Js}$
3 $6.4 \times 10^{-34} \mathrm{Js}$
4 $6.6 \times 10^{-34} \mathrm{Js}$
Dual nature of radiation and Matter

141989 Light strikes a metal surface causing photoelectric emission. The wavelength of incident light is $248 \mathrm{~nm}$. If the stopping potential for the ejected electrons is $2.8 \mathrm{eV}$, then the work function of the metal is (Take he $=1240 \mathrm{eV} . \mathrm{nm}$ )

1 $5.2 \mathrm{eV}$
2 $4.4 \mathrm{eV}$
3 $3.8 \mathrm{eV}$
4 $2.2 \mathrm{eV}$
Dual nature of radiation and Matter

141991 In a photo electric experiment, the wavelength of the light incident on the metal is changed from $200 \mathrm{~nm}$ to $400 \mathrm{~nm}$. The decrease in the stopping potential is close to
[Use hc $=1240 \mathrm{eV}$-nm where $\mathrm{h}=$ Planck's constant and $\mathbf{c}$ is velocity of light]

1 $3.1 \mathrm{~V}$
2 $2.8 \mathrm{~V}$
3 $4.2 \mathrm{~V}$
4 $1.2 \mathrm{~V}$
Dual nature of radiation and Matter

141992 When monochromatic light falls on a photosensitive metal, an electron is emitted with maximum velocity $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Find the stopping potential.
[charge of electron $=1.6 \times 10^{-19} \mathrm{C}$, mass of electron $\left.=9 \times 10^{-31} \mathrm{~kg}\right]$

1 $7.2 \mathrm{~V}$
2 $14.4 \mathrm{~V}$
3 $21.6 \mathrm{~V}$
4 $28.8 \mathrm{~V}$
Dual nature of radiation and Matter

141993 In a photoelectric effect, the maximum energy of the photoelectron is attained with exposure of $2000 \mathrm{~A}$ light. If the maximum kinetic energy of the photoelectron is $3 \mathrm{eV}$, the threshold wavelength will be
(use hc $=1240 \mathrm{ev} . \mathrm{nm}$ )

1 $387.5 \mathrm{~nm}$
2 $402.5 \mathrm{~nm}$
3 $339.5 \mathrm{~nm}$
4 $445.5 \mathrm{~nm}$
Dual nature of radiation and Matter

141988 The value of Plank's constant, if the slope of the graph of stopping potential vs frequency of incident light is $4 \times 10^{-15} \mathrm{Vs}$ is

1 $6.0 \times 120^{-34} \mathrm{Js}$
2 $6.2 \times 10^{-34} \mathrm{Js}$
3 $6.4 \times 10^{-34} \mathrm{Js}$
4 $6.6 \times 10^{-34} \mathrm{Js}$
Dual nature of radiation and Matter

141989 Light strikes a metal surface causing photoelectric emission. The wavelength of incident light is $248 \mathrm{~nm}$. If the stopping potential for the ejected electrons is $2.8 \mathrm{eV}$, then the work function of the metal is (Take he $=1240 \mathrm{eV} . \mathrm{nm}$ )

1 $5.2 \mathrm{eV}$
2 $4.4 \mathrm{eV}$
3 $3.8 \mathrm{eV}$
4 $2.2 \mathrm{eV}$
Dual nature of radiation and Matter

141991 In a photo electric experiment, the wavelength of the light incident on the metal is changed from $200 \mathrm{~nm}$ to $400 \mathrm{~nm}$. The decrease in the stopping potential is close to
[Use hc $=1240 \mathrm{eV}$-nm where $\mathrm{h}=$ Planck's constant and $\mathbf{c}$ is velocity of light]

1 $3.1 \mathrm{~V}$
2 $2.8 \mathrm{~V}$
3 $4.2 \mathrm{~V}$
4 $1.2 \mathrm{~V}$
Dual nature of radiation and Matter

141992 When monochromatic light falls on a photosensitive metal, an electron is emitted with maximum velocity $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Find the stopping potential.
[charge of electron $=1.6 \times 10^{-19} \mathrm{C}$, mass of electron $\left.=9 \times 10^{-31} \mathrm{~kg}\right]$

1 $7.2 \mathrm{~V}$
2 $14.4 \mathrm{~V}$
3 $21.6 \mathrm{~V}$
4 $28.8 \mathrm{~V}$
Dual nature of radiation and Matter

141993 In a photoelectric effect, the maximum energy of the photoelectron is attained with exposure of $2000 \mathrm{~A}$ light. If the maximum kinetic energy of the photoelectron is $3 \mathrm{eV}$, the threshold wavelength will be
(use hc $=1240 \mathrm{ev} . \mathrm{nm}$ )

1 $387.5 \mathrm{~nm}$
2 $402.5 \mathrm{~nm}$
3 $339.5 \mathrm{~nm}$
4 $445.5 \mathrm{~nm}$
Dual nature of radiation and Matter

141988 The value of Plank's constant, if the slope of the graph of stopping potential vs frequency of incident light is $4 \times 10^{-15} \mathrm{Vs}$ is

1 $6.0 \times 120^{-34} \mathrm{Js}$
2 $6.2 \times 10^{-34} \mathrm{Js}$
3 $6.4 \times 10^{-34} \mathrm{Js}$
4 $6.6 \times 10^{-34} \mathrm{Js}$
Dual nature of radiation and Matter

141989 Light strikes a metal surface causing photoelectric emission. The wavelength of incident light is $248 \mathrm{~nm}$. If the stopping potential for the ejected electrons is $2.8 \mathrm{eV}$, then the work function of the metal is (Take he $=1240 \mathrm{eV} . \mathrm{nm}$ )

1 $5.2 \mathrm{eV}$
2 $4.4 \mathrm{eV}$
3 $3.8 \mathrm{eV}$
4 $2.2 \mathrm{eV}$
Dual nature of radiation and Matter

141991 In a photo electric experiment, the wavelength of the light incident on the metal is changed from $200 \mathrm{~nm}$ to $400 \mathrm{~nm}$. The decrease in the stopping potential is close to
[Use hc $=1240 \mathrm{eV}$-nm where $\mathrm{h}=$ Planck's constant and $\mathbf{c}$ is velocity of light]

1 $3.1 \mathrm{~V}$
2 $2.8 \mathrm{~V}$
3 $4.2 \mathrm{~V}$
4 $1.2 \mathrm{~V}$
Dual nature of radiation and Matter

141992 When monochromatic light falls on a photosensitive metal, an electron is emitted with maximum velocity $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Find the stopping potential.
[charge of electron $=1.6 \times 10^{-19} \mathrm{C}$, mass of electron $\left.=9 \times 10^{-31} \mathrm{~kg}\right]$

1 $7.2 \mathrm{~V}$
2 $14.4 \mathrm{~V}$
3 $21.6 \mathrm{~V}$
4 $28.8 \mathrm{~V}$
Dual nature of radiation and Matter

141993 In a photoelectric effect, the maximum energy of the photoelectron is attained with exposure of $2000 \mathrm{~A}$ light. If the maximum kinetic energy of the photoelectron is $3 \mathrm{eV}$, the threshold wavelength will be
(use hc $=1240 \mathrm{ev} . \mathrm{nm}$ )

1 $387.5 \mathrm{~nm}$
2 $402.5 \mathrm{~nm}$
3 $339.5 \mathrm{~nm}$
4 $445.5 \mathrm{~nm}$