Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
Dual nature of radiation and Matter

141983 The kinetic energy of emitted electron is $E$ when the light incident on the metal has wavelength $\lambda$. To double the kinetic energy, the incident light must have wavelength:

1 $\frac{\mathrm{hc}}{\mathrm{E} \lambda-\mathrm{hc}}$
2 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
3 $\frac{\mathrm{h} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
4 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda-\mathrm{hc}}$
Dual nature of radiation and Matter

141985 Let $K_{1}$ and $K_{2}$ be the maximum kinetic energies of photo-electrons emitted when two monochromatic beams of wavelength $\lambda_{1}$ and $\lambda_{2}$, respectively are incident on a metallic surface. If $\lambda_{1}=3 \lambda_{2}$ then:

1 $K_{1}>\frac{K_{2}}{3}$
2 $\mathrm{K}_{1} \lt \frac{\mathrm{K}_{2}}{3}$
3 $\mathrm{K}_{1}=\frac{\mathrm{K}_{2}}{3}$
4 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{3}$
Dual nature of radiation and Matter

141986 A parallel beam of light of wavelength $900 \mathrm{~nm}$ and intensity $100 \mathrm{Wm}^{-2}$ is incident on a surface perpendicular to the beam. The number of photons crossing $1 \mathrm{~cm}^{2}$ area perpendicular to the beam in one second is:

1 $3 \times 10^{16}$
2 $4.5 \times 10^{16}$
3 $4.5 \times 10^{17}$
4 $4.5 \times 10^{20}$
Dual nature of radiation and Matter

141987 Photoelectric emission from a metal begins at a frequency of $6 \times 10^{14} \mathrm{~Hz}$. The emitted electrons are fully stopped by a retarding potential of 3.3 $V$. What will be the wavelength of the incident radiation?

1 $214 \mathrm{~nm}$
2 $290 \mathrm{~nm}$
3 $320 \mathrm{~nm}$
4 $380 \mathrm{~nm}$
Dual nature of radiation and Matter

141983 The kinetic energy of emitted electron is $E$ when the light incident on the metal has wavelength $\lambda$. To double the kinetic energy, the incident light must have wavelength:

1 $\frac{\mathrm{hc}}{\mathrm{E} \lambda-\mathrm{hc}}$
2 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
3 $\frac{\mathrm{h} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
4 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda-\mathrm{hc}}$
Dual nature of radiation and Matter

141985 Let $K_{1}$ and $K_{2}$ be the maximum kinetic energies of photo-electrons emitted when two monochromatic beams of wavelength $\lambda_{1}$ and $\lambda_{2}$, respectively are incident on a metallic surface. If $\lambda_{1}=3 \lambda_{2}$ then:

1 $K_{1}>\frac{K_{2}}{3}$
2 $\mathrm{K}_{1} \lt \frac{\mathrm{K}_{2}}{3}$
3 $\mathrm{K}_{1}=\frac{\mathrm{K}_{2}}{3}$
4 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{3}$
Dual nature of radiation and Matter

141986 A parallel beam of light of wavelength $900 \mathrm{~nm}$ and intensity $100 \mathrm{Wm}^{-2}$ is incident on a surface perpendicular to the beam. The number of photons crossing $1 \mathrm{~cm}^{2}$ area perpendicular to the beam in one second is:

1 $3 \times 10^{16}$
2 $4.5 \times 10^{16}$
3 $4.5 \times 10^{17}$
4 $4.5 \times 10^{20}$
Dual nature of radiation and Matter

141987 Photoelectric emission from a metal begins at a frequency of $6 \times 10^{14} \mathrm{~Hz}$. The emitted electrons are fully stopped by a retarding potential of 3.3 $V$. What will be the wavelength of the incident radiation?

1 $214 \mathrm{~nm}$
2 $290 \mathrm{~nm}$
3 $320 \mathrm{~nm}$
4 $380 \mathrm{~nm}$
Dual nature of radiation and Matter

141983 The kinetic energy of emitted electron is $E$ when the light incident on the metal has wavelength $\lambda$. To double the kinetic energy, the incident light must have wavelength:

1 $\frac{\mathrm{hc}}{\mathrm{E} \lambda-\mathrm{hc}}$
2 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
3 $\frac{\mathrm{h} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
4 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda-\mathrm{hc}}$
Dual nature of radiation and Matter

141985 Let $K_{1}$ and $K_{2}$ be the maximum kinetic energies of photo-electrons emitted when two monochromatic beams of wavelength $\lambda_{1}$ and $\lambda_{2}$, respectively are incident on a metallic surface. If $\lambda_{1}=3 \lambda_{2}$ then:

1 $K_{1}>\frac{K_{2}}{3}$
2 $\mathrm{K}_{1} \lt \frac{\mathrm{K}_{2}}{3}$
3 $\mathrm{K}_{1}=\frac{\mathrm{K}_{2}}{3}$
4 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{3}$
Dual nature of radiation and Matter

141986 A parallel beam of light of wavelength $900 \mathrm{~nm}$ and intensity $100 \mathrm{Wm}^{-2}$ is incident on a surface perpendicular to the beam. The number of photons crossing $1 \mathrm{~cm}^{2}$ area perpendicular to the beam in one second is:

1 $3 \times 10^{16}$
2 $4.5 \times 10^{16}$
3 $4.5 \times 10^{17}$
4 $4.5 \times 10^{20}$
Dual nature of radiation and Matter

141987 Photoelectric emission from a metal begins at a frequency of $6 \times 10^{14} \mathrm{~Hz}$. The emitted electrons are fully stopped by a retarding potential of 3.3 $V$. What will be the wavelength of the incident radiation?

1 $214 \mathrm{~nm}$
2 $290 \mathrm{~nm}$
3 $320 \mathrm{~nm}$
4 $380 \mathrm{~nm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

141983 The kinetic energy of emitted electron is $E$ when the light incident on the metal has wavelength $\lambda$. To double the kinetic energy, the incident light must have wavelength:

1 $\frac{\mathrm{hc}}{\mathrm{E} \lambda-\mathrm{hc}}$
2 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
3 $\frac{\mathrm{h} \lambda}{\mathrm{E} \lambda+\mathrm{hc}}$
4 $\frac{\mathrm{hc} \lambda}{\mathrm{E} \lambda-\mathrm{hc}}$
Dual nature of radiation and Matter

141985 Let $K_{1}$ and $K_{2}$ be the maximum kinetic energies of photo-electrons emitted when two monochromatic beams of wavelength $\lambda_{1}$ and $\lambda_{2}$, respectively are incident on a metallic surface. If $\lambda_{1}=3 \lambda_{2}$ then:

1 $K_{1}>\frac{K_{2}}{3}$
2 $\mathrm{K}_{1} \lt \frac{\mathrm{K}_{2}}{3}$
3 $\mathrm{K}_{1}=\frac{\mathrm{K}_{2}}{3}$
4 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{3}$
Dual nature of radiation and Matter

141986 A parallel beam of light of wavelength $900 \mathrm{~nm}$ and intensity $100 \mathrm{Wm}^{-2}$ is incident on a surface perpendicular to the beam. The number of photons crossing $1 \mathrm{~cm}^{2}$ area perpendicular to the beam in one second is:

1 $3 \times 10^{16}$
2 $4.5 \times 10^{16}$
3 $4.5 \times 10^{17}$
4 $4.5 \times 10^{20}$
Dual nature of radiation and Matter

141987 Photoelectric emission from a metal begins at a frequency of $6 \times 10^{14} \mathrm{~Hz}$. The emitted electrons are fully stopped by a retarding potential of 3.3 $V$. What will be the wavelength of the incident radiation?

1 $214 \mathrm{~nm}$
2 $290 \mathrm{~nm}$
3 $320 \mathrm{~nm}$
4 $380 \mathrm{~nm}$