Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
Dual nature of radiation and Matter

142133 $6.4 \times 10^{-9}$ joule is approximately

1 4 electron volt
2 6 electron volt
3 8 electron volt
4 1 electron volt
Dual nature of radiation and Matter

142001 Threshold frequency for photoelectric effect on sodium corresponds to a wavelength $5000 \AA$. Its work function is

1 $15 \mathrm{~J}$
2 $16 \times 10^{-14} \mathrm{~J}$
3 $4 \times 10^{-19} \mathrm{~J}$
4 $4 \times 10^{-18} \mathrm{~J}$
Dual nature of radiation and Matter

142002 In the experimental study of photoelectric effect, if $V_{0}$ is the stopping potential and $v$ is the frequency of the incident light on the metal the slope of graph plotted for $V_{0}$ versus $v$ is (Where $h$, e and $\phi_{0}$ are Planck's constant, charge of electron and work function of the metal respectively.)

1 $\mathrm{h}$
2 $\frac{\mathrm{h}}{\mathrm{e}}$
3 $\frac{\phi_{o}}{\mathrm{e}}$
4 $\phi_{\mathrm{o}}$
Dual nature of radiation and Matter

142005 When light of wavelength ' $\lambda$ ' is incident on photosensitive surface, photons of power ' $P$ ' are emitted. The number of photons (n) emitted in ' $t$ ' second is
$(h=$ Planck's constant, $c=$ velocity of light in vacuum)

1 $\frac{\mathrm{P} \lambda \mathrm{t}}{\mathrm{hc}}$
2 $\frac{\mathrm{hP}}{\lambda \mathrm{tc}}$
3 $\frac{\mathrm{P} \lambda}{\mathrm{htc}}$
4 $\frac{\mathrm{hc}}{\mathrm{P} \lambda \mathrm{t}}$
Dual nature of radiation and Matter

142006 The maximum velocity of the photoelectron emitted by the metal surface is ' $v$ '. Charge and mass of the photoelectron is denoted by ' $\mathrm{e}$ ' and ' $m$ ' respectively. The stopping potential in volt is

1 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
2 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
3 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
4 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
Dual nature of radiation and Matter

142133 $6.4 \times 10^{-9}$ joule is approximately

1 4 electron volt
2 6 electron volt
3 8 electron volt
4 1 electron volt
Dual nature of radiation and Matter

142001 Threshold frequency for photoelectric effect on sodium corresponds to a wavelength $5000 \AA$. Its work function is

1 $15 \mathrm{~J}$
2 $16 \times 10^{-14} \mathrm{~J}$
3 $4 \times 10^{-19} \mathrm{~J}$
4 $4 \times 10^{-18} \mathrm{~J}$
Dual nature of radiation and Matter

142002 In the experimental study of photoelectric effect, if $V_{0}$ is the stopping potential and $v$ is the frequency of the incident light on the metal the slope of graph plotted for $V_{0}$ versus $v$ is (Where $h$, e and $\phi_{0}$ are Planck's constant, charge of electron and work function of the metal respectively.)

1 $\mathrm{h}$
2 $\frac{\mathrm{h}}{\mathrm{e}}$
3 $\frac{\phi_{o}}{\mathrm{e}}$
4 $\phi_{\mathrm{o}}$
Dual nature of radiation and Matter

142005 When light of wavelength ' $\lambda$ ' is incident on photosensitive surface, photons of power ' $P$ ' are emitted. The number of photons (n) emitted in ' $t$ ' second is
$(h=$ Planck's constant, $c=$ velocity of light in vacuum)

1 $\frac{\mathrm{P} \lambda \mathrm{t}}{\mathrm{hc}}$
2 $\frac{\mathrm{hP}}{\lambda \mathrm{tc}}$
3 $\frac{\mathrm{P} \lambda}{\mathrm{htc}}$
4 $\frac{\mathrm{hc}}{\mathrm{P} \lambda \mathrm{t}}$
Dual nature of radiation and Matter

142006 The maximum velocity of the photoelectron emitted by the metal surface is ' $v$ '. Charge and mass of the photoelectron is denoted by ' $\mathrm{e}$ ' and ' $m$ ' respectively. The stopping potential in volt is

1 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
2 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
3 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
4 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
Dual nature of radiation and Matter

142133 $6.4 \times 10^{-9}$ joule is approximately

1 4 electron volt
2 6 electron volt
3 8 electron volt
4 1 electron volt
Dual nature of radiation and Matter

142001 Threshold frequency for photoelectric effect on sodium corresponds to a wavelength $5000 \AA$. Its work function is

1 $15 \mathrm{~J}$
2 $16 \times 10^{-14} \mathrm{~J}$
3 $4 \times 10^{-19} \mathrm{~J}$
4 $4 \times 10^{-18} \mathrm{~J}$
Dual nature of radiation and Matter

142002 In the experimental study of photoelectric effect, if $V_{0}$ is the stopping potential and $v$ is the frequency of the incident light on the metal the slope of graph plotted for $V_{0}$ versus $v$ is (Where $h$, e and $\phi_{0}$ are Planck's constant, charge of electron and work function of the metal respectively.)

1 $\mathrm{h}$
2 $\frac{\mathrm{h}}{\mathrm{e}}$
3 $\frac{\phi_{o}}{\mathrm{e}}$
4 $\phi_{\mathrm{o}}$
Dual nature of radiation and Matter

142005 When light of wavelength ' $\lambda$ ' is incident on photosensitive surface, photons of power ' $P$ ' are emitted. The number of photons (n) emitted in ' $t$ ' second is
$(h=$ Planck's constant, $c=$ velocity of light in vacuum)

1 $\frac{\mathrm{P} \lambda \mathrm{t}}{\mathrm{hc}}$
2 $\frac{\mathrm{hP}}{\lambda \mathrm{tc}}$
3 $\frac{\mathrm{P} \lambda}{\mathrm{htc}}$
4 $\frac{\mathrm{hc}}{\mathrm{P} \lambda \mathrm{t}}$
Dual nature of radiation and Matter

142006 The maximum velocity of the photoelectron emitted by the metal surface is ' $v$ '. Charge and mass of the photoelectron is denoted by ' $\mathrm{e}$ ' and ' $m$ ' respectively. The stopping potential in volt is

1 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
2 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
3 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
4 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142133 $6.4 \times 10^{-9}$ joule is approximately

1 4 electron volt
2 6 electron volt
3 8 electron volt
4 1 electron volt
Dual nature of radiation and Matter

142001 Threshold frequency for photoelectric effect on sodium corresponds to a wavelength $5000 \AA$. Its work function is

1 $15 \mathrm{~J}$
2 $16 \times 10^{-14} \mathrm{~J}$
3 $4 \times 10^{-19} \mathrm{~J}$
4 $4 \times 10^{-18} \mathrm{~J}$
Dual nature of radiation and Matter

142002 In the experimental study of photoelectric effect, if $V_{0}$ is the stopping potential and $v$ is the frequency of the incident light on the metal the slope of graph plotted for $V_{0}$ versus $v$ is (Where $h$, e and $\phi_{0}$ are Planck's constant, charge of electron and work function of the metal respectively.)

1 $\mathrm{h}$
2 $\frac{\mathrm{h}}{\mathrm{e}}$
3 $\frac{\phi_{o}}{\mathrm{e}}$
4 $\phi_{\mathrm{o}}$
Dual nature of radiation and Matter

142005 When light of wavelength ' $\lambda$ ' is incident on photosensitive surface, photons of power ' $P$ ' are emitted. The number of photons (n) emitted in ' $t$ ' second is
$(h=$ Planck's constant, $c=$ velocity of light in vacuum)

1 $\frac{\mathrm{P} \lambda \mathrm{t}}{\mathrm{hc}}$
2 $\frac{\mathrm{hP}}{\lambda \mathrm{tc}}$
3 $\frac{\mathrm{P} \lambda}{\mathrm{htc}}$
4 $\frac{\mathrm{hc}}{\mathrm{P} \lambda \mathrm{t}}$
Dual nature of radiation and Matter

142006 The maximum velocity of the photoelectron emitted by the metal surface is ' $v$ '. Charge and mass of the photoelectron is denoted by ' $\mathrm{e}$ ' and ' $m$ ' respectively. The stopping potential in volt is

1 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
2 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
3 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
4 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
Dual nature of radiation and Matter

142133 $6.4 \times 10^{-9}$ joule is approximately

1 4 electron volt
2 6 electron volt
3 8 electron volt
4 1 electron volt
Dual nature of radiation and Matter

142001 Threshold frequency for photoelectric effect on sodium corresponds to a wavelength $5000 \AA$. Its work function is

1 $15 \mathrm{~J}$
2 $16 \times 10^{-14} \mathrm{~J}$
3 $4 \times 10^{-19} \mathrm{~J}$
4 $4 \times 10^{-18} \mathrm{~J}$
Dual nature of radiation and Matter

142002 In the experimental study of photoelectric effect, if $V_{0}$ is the stopping potential and $v$ is the frequency of the incident light on the metal the slope of graph plotted for $V_{0}$ versus $v$ is (Where $h$, e and $\phi_{0}$ are Planck's constant, charge of electron and work function of the metal respectively.)

1 $\mathrm{h}$
2 $\frac{\mathrm{h}}{\mathrm{e}}$
3 $\frac{\phi_{o}}{\mathrm{e}}$
4 $\phi_{\mathrm{o}}$
Dual nature of radiation and Matter

142005 When light of wavelength ' $\lambda$ ' is incident on photosensitive surface, photons of power ' $P$ ' are emitted. The number of photons (n) emitted in ' $t$ ' second is
$(h=$ Planck's constant, $c=$ velocity of light in vacuum)

1 $\frac{\mathrm{P} \lambda \mathrm{t}}{\mathrm{hc}}$
2 $\frac{\mathrm{hP}}{\lambda \mathrm{tc}}$
3 $\frac{\mathrm{P} \lambda}{\mathrm{htc}}$
4 $\frac{\mathrm{hc}}{\mathrm{P} \lambda \mathrm{t}}$
Dual nature of radiation and Matter

142006 The maximum velocity of the photoelectron emitted by the metal surface is ' $v$ '. Charge and mass of the photoelectron is denoted by ' $\mathrm{e}$ ' and ' $m$ ' respectively. The stopping potential in volt is

1 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
2 $\frac{\mathrm{v}^{2}}{\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$
3 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{e}}{\mathrm{m}}\right)}$
4 $\frac{\mathrm{v}^{2}}{2\left(\frac{\mathrm{m}}{\mathrm{e}}\right)}$