REAL NUMBERS
REAL NUMBERS

90318 The HCF and LCM of two numbers are 9 and 90 respectively. If one number is 18, then the other number is:

1 )63
2 )36
3 )45
4 )54
REAL NUMBERS

90320 If 9\(^{x}\) + 2 = 240 + 9\(^{x}\), then the value of x is:

1 )0.3
2 )0.2
3 )0.1
4 )0.5
REAL NUMBERS

90321 The smallest number of 4 digits exactly divisible by 12, 15, 18 and 27 is

1 )1002
2 )1001
3 )1000
4 )1080
REAL NUMBERS

90323 If two positive integers m and n can be expressed as m = x\(^{2}\)y\(^{5 }\)and n = x\(^{3}\)y\(^{2}\), where x and y are prime numbers, then HCF(m, n) =

1 )x\(^{2}\)y\(^{3}\)
2 )x\(^{2}\)y\(^{2}\)
3 )x\(^{3}\)y\(^{2}\)
4 )x\(^{3}\)y\(^{3}\)
REAL NUMBERS

90386 If one of the zeroes of the cubic polynomial x\(^{3}\) + ax\(^{2}\) + bx + c is -1, then the product of other two zeroes is:

1 )b - a + 1
2 )b - a – 1
3 )a - b + 1
4 )a - b - 1
REAL NUMBERS

90318 The HCF and LCM of two numbers are 9 and 90 respectively. If one number is 18, then the other number is:

1 )63
2 )36
3 )45
4 )54
REAL NUMBERS

90320 If 9\(^{x}\) + 2 = 240 + 9\(^{x}\), then the value of x is:

1 )0.3
2 )0.2
3 )0.1
4 )0.5
REAL NUMBERS

90321 The smallest number of 4 digits exactly divisible by 12, 15, 18 and 27 is

1 )1002
2 )1001
3 )1000
4 )1080
REAL NUMBERS

90323 If two positive integers m and n can be expressed as m = x\(^{2}\)y\(^{5 }\)and n = x\(^{3}\)y\(^{2}\), where x and y are prime numbers, then HCF(m, n) =

1 )x\(^{2}\)y\(^{3}\)
2 )x\(^{2}\)y\(^{2}\)
3 )x\(^{3}\)y\(^{2}\)
4 )x\(^{3}\)y\(^{3}\)
REAL NUMBERS

90386 If one of the zeroes of the cubic polynomial x\(^{3}\) + ax\(^{2}\) + bx + c is -1, then the product of other two zeroes is:

1 )b - a + 1
2 )b - a – 1
3 )a - b + 1
4 )a - b - 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
REAL NUMBERS

90318 The HCF and LCM of two numbers are 9 and 90 respectively. If one number is 18, then the other number is:

1 )63
2 )36
3 )45
4 )54
REAL NUMBERS

90320 If 9\(^{x}\) + 2 = 240 + 9\(^{x}\), then the value of x is:

1 )0.3
2 )0.2
3 )0.1
4 )0.5
REAL NUMBERS

90321 The smallest number of 4 digits exactly divisible by 12, 15, 18 and 27 is

1 )1002
2 )1001
3 )1000
4 )1080
REAL NUMBERS

90323 If two positive integers m and n can be expressed as m = x\(^{2}\)y\(^{5 }\)and n = x\(^{3}\)y\(^{2}\), where x and y are prime numbers, then HCF(m, n) =

1 )x\(^{2}\)y\(^{3}\)
2 )x\(^{2}\)y\(^{2}\)
3 )x\(^{3}\)y\(^{2}\)
4 )x\(^{3}\)y\(^{3}\)
REAL NUMBERS

90386 If one of the zeroes of the cubic polynomial x\(^{3}\) + ax\(^{2}\) + bx + c is -1, then the product of other two zeroes is:

1 )b - a + 1
2 )b - a – 1
3 )a - b + 1
4 )a - b - 1
REAL NUMBERS

90318 The HCF and LCM of two numbers are 9 and 90 respectively. If one number is 18, then the other number is:

1 )63
2 )36
3 )45
4 )54
REAL NUMBERS

90320 If 9\(^{x}\) + 2 = 240 + 9\(^{x}\), then the value of x is:

1 )0.3
2 )0.2
3 )0.1
4 )0.5
REAL NUMBERS

90321 The smallest number of 4 digits exactly divisible by 12, 15, 18 and 27 is

1 )1002
2 )1001
3 )1000
4 )1080
REAL NUMBERS

90323 If two positive integers m and n can be expressed as m = x\(^{2}\)y\(^{5 }\)and n = x\(^{3}\)y\(^{2}\), where x and y are prime numbers, then HCF(m, n) =

1 )x\(^{2}\)y\(^{3}\)
2 )x\(^{2}\)y\(^{2}\)
3 )x\(^{3}\)y\(^{2}\)
4 )x\(^{3}\)y\(^{3}\)
REAL NUMBERS

90386 If one of the zeroes of the cubic polynomial x\(^{3}\) + ax\(^{2}\) + bx + c is -1, then the product of other two zeroes is:

1 )b - a + 1
2 )b - a – 1
3 )a - b + 1
4 )a - b - 1
REAL NUMBERS

90318 The HCF and LCM of two numbers are 9 and 90 respectively. If one number is 18, then the other number is:

1 )63
2 )36
3 )45
4 )54
REAL NUMBERS

90320 If 9\(^{x}\) + 2 = 240 + 9\(^{x}\), then the value of x is:

1 )0.3
2 )0.2
3 )0.1
4 )0.5
REAL NUMBERS

90321 The smallest number of 4 digits exactly divisible by 12, 15, 18 and 27 is

1 )1002
2 )1001
3 )1000
4 )1080
REAL NUMBERS

90323 If two positive integers m and n can be expressed as m = x\(^{2}\)y\(^{5 }\)and n = x\(^{3}\)y\(^{2}\), where x and y are prime numbers, then HCF(m, n) =

1 )x\(^{2}\)y\(^{3}\)
2 )x\(^{2}\)y\(^{2}\)
3 )x\(^{3}\)y\(^{2}\)
4 )x\(^{3}\)y\(^{3}\)
REAL NUMBERS

90386 If one of the zeroes of the cubic polynomial x\(^{3}\) + ax\(^{2}\) + bx + c is -1, then the product of other two zeroes is:

1 )b - a + 1
2 )b - a – 1
3 )a - b + 1
4 )a - b - 1