Domain, Co-domain and Range of Function
Sets, Relation and Function

117452 The image of the interval $[-1,3]$ under the mapping $f: R \rightarrow R$ given by $f(x)=4 x^3-12 x$ is

1 $[8,72]$
2 $[0,72]$
3 $[-8,72]$
4 $[0,8]$
5 $[-8,8]$
Sets, Relation and Function

117453 The domain of the function $(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

1 $\mathrm{R}-\{-1,-2\}$
2 $\mathrm{R}-\{-1,-2,0\}$
3 $(-3,-1) \cup(-1, \infty)$
4 $(-3, \infty)-\{-1,-2\}$
5 $(0, \infty)$
Sets, Relation and Function

117454 The domain of the function \(f(x)=\sin ^{-1}\left(\frac{x+5}{2}\right)\) is

1 \([-1,1]\)
2 \([2,3]\)
3 \([3,7]\)
4 \([-7,-3]\)
5 \((-\infty, \infty)\)
Sets, Relation and Function

117455 The range of the function \(f(x)=\frac{x^2+8}{x^2+4}, x \in R\) is

1 \(\left[-1, \frac{3}{2}\right]\)
2 \((1,2]\)
3 \((1,2)\)
4 \([1,2]\)
5 \(\left[\frac{3}{2}, 2\right]\)
Sets, Relation and Function

117452 The image of the interval $[-1,3]$ under the mapping $f: R \rightarrow R$ given by $f(x)=4 x^3-12 x$ is

1 $[8,72]$
2 $[0,72]$
3 $[-8,72]$
4 $[0,8]$
5 $[-8,8]$
Sets, Relation and Function

117453 The domain of the function $(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

1 $\mathrm{R}-\{-1,-2\}$
2 $\mathrm{R}-\{-1,-2,0\}$
3 $(-3,-1) \cup(-1, \infty)$
4 $(-3, \infty)-\{-1,-2\}$
5 $(0, \infty)$
Sets, Relation and Function

117454 The domain of the function \(f(x)=\sin ^{-1}\left(\frac{x+5}{2}\right)\) is

1 \([-1,1]\)
2 \([2,3]\)
3 \([3,7]\)
4 \([-7,-3]\)
5 \((-\infty, \infty)\)
Sets, Relation and Function

117455 The range of the function \(f(x)=\frac{x^2+8}{x^2+4}, x \in R\) is

1 \(\left[-1, \frac{3}{2}\right]\)
2 \((1,2]\)
3 \((1,2)\)
4 \([1,2]\)
5 \(\left[\frac{3}{2}, 2\right]\)
Sets, Relation and Function

117452 The image of the interval $[-1,3]$ under the mapping $f: R \rightarrow R$ given by $f(x)=4 x^3-12 x$ is

1 $[8,72]$
2 $[0,72]$
3 $[-8,72]$
4 $[0,8]$
5 $[-8,8]$
Sets, Relation and Function

117453 The domain of the function $(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

1 $\mathrm{R}-\{-1,-2\}$
2 $\mathrm{R}-\{-1,-2,0\}$
3 $(-3,-1) \cup(-1, \infty)$
4 $(-3, \infty)-\{-1,-2\}$
5 $(0, \infty)$
Sets, Relation and Function

117454 The domain of the function \(f(x)=\sin ^{-1}\left(\frac{x+5}{2}\right)\) is

1 \([-1,1]\)
2 \([2,3]\)
3 \([3,7]\)
4 \([-7,-3]\)
5 \((-\infty, \infty)\)
Sets, Relation and Function

117455 The range of the function \(f(x)=\frac{x^2+8}{x^2+4}, x \in R\) is

1 \(\left[-1, \frac{3}{2}\right]\)
2 \((1,2]\)
3 \((1,2)\)
4 \([1,2]\)
5 \(\left[\frac{3}{2}, 2\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117452 The image of the interval $[-1,3]$ under the mapping $f: R \rightarrow R$ given by $f(x)=4 x^3-12 x$ is

1 $[8,72]$
2 $[0,72]$
3 $[-8,72]$
4 $[0,8]$
5 $[-8,8]$
Sets, Relation and Function

117453 The domain of the function $(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

1 $\mathrm{R}-\{-1,-2\}$
2 $\mathrm{R}-\{-1,-2,0\}$
3 $(-3,-1) \cup(-1, \infty)$
4 $(-3, \infty)-\{-1,-2\}$
5 $(0, \infty)$
Sets, Relation and Function

117454 The domain of the function \(f(x)=\sin ^{-1}\left(\frac{x+5}{2}\right)\) is

1 \([-1,1]\)
2 \([2,3]\)
3 \([3,7]\)
4 \([-7,-3]\)
5 \((-\infty, \infty)\)
Sets, Relation and Function

117455 The range of the function \(f(x)=\frac{x^2+8}{x^2+4}, x \in R\) is

1 \(\left[-1, \frac{3}{2}\right]\)
2 \((1,2]\)
3 \((1,2)\)
4 \([1,2]\)
5 \(\left[\frac{3}{2}, 2\right]\)